답안 #98989

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
98989 2019-02-28T00:48:42 Z Benq Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 53248 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200001;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; trav(a,x) pr(!fst?", ":"",a), fst = 0; 
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    template<class Arg> void ps(const Arg& first) { pr(first,"\n"); } // print w/ spaces
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); 
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

namespace modOp {
    int ad(int a, int b, int mod = MOD) { return (a+b)%mod; }
    int sub(int a, int b, int mod = MOD) { return (a-b+mod)%mod; }
    int mul(int a, int b, int mod = MOD) { return (ll)a*b%mod; }
    
    int AD(int& a, int b, int mod = MOD) { return a = ad(a,b,mod); }
    int SUB(int& a, int b, int mod = MOD) { return a = sub(a,b,mod); }
    int MUL(int& a, int b, int mod = MOD) { return a = mul(a,b,mod); }
    
    int po (int b, int p, int mod = MOD) { return !p?1:mul(po(mul(b,b,mod),p/2,mod),p&1?b:1,mod); }
    int inv (int b, int mod = MOD) { return po(b,mod-2,mod); }
    
    int invGeneral(int a, int b) { // 0 < a < b, gcd(a,b) = 1
        if (a == 0) return b == 1 ? 0 : -1;
        int x = invGeneral(b%a,a); 
        return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
    }
}

using namespace modOp;

template<int SZ> struct TreeDiameter {
    int n, dist[SZ], pre[SZ];
    vi adj[SZ];

    void addEdge(int a, int b) {
        adj[a].pb(b), adj[b].pb(a);
    }

    void dfs(int cur) {
        for (int i: adj[cur]) if (i != pre[cur]) {
            pre[i] = cur;
            dist[i] = dist[cur]+1;
            dfs(i);
        }
    }

    void genDist(int cur) {
        memset(dist,0,sizeof dist);
        pre[cur] = -1;
        dfs(cur);
    }

    vi diameter() {
        vi res;
        genDist(1);
        int bes = 0; FOR(i,1,n+1) if (dist[i] > dist[bes]) bes = i;
        res.pb(bes);
        genDist(bes); FOR(i,1,n+1) if (dist[i] > dist[bes]) bes = i;
        res.pb(bes);
        return res;
    }
};


TreeDiameter<MX> T;

int M,CUR,co[MX],c[MX],len[MX];
pi ans[MX][2];
vpi seq;

void modi(int a, int b) {
    a = c[a];
    if (co[a]) CUR --;
    co[a] += b;
    if (co[a]) CUR ++;
}

void solve(int ind, int cur, int dist, int pre) {
    pi maxSub = {-1,-1};
    trav(a,T.adj[cur]) if (a != pre) ckmax(maxSub,{len[a],a});
    int l = 0; trav(a,T.adj[cur]) if (a != pre && a != maxSub.s) ckmax(l,len[a]+1); 
    
    vpi del;
    while (sz(seq) && seq.back().f >= dist-l) {
        del.pb(seq.back());
        modi(seq.back().s,-1);
        seq.pop_back();
    }
    seq.pb({dist,cur}); modi(seq.back().s,1);
    if (maxSub.s != -1) solve(ind,maxSub.s,dist+1,cur);
    modi(seq.back().s,-1);
    seq.pop_back();
    while (sz(seq) && seq.back().f >= dist-(maxSub.f+1)) {
        del.pb(seq.back());
        modi(seq.back().s,-1);
        seq.pop_back();
    }
    ans[cur][ind] = {dist,CUR};
    seq.pb({dist,cur}); modi(seq.back().s,1);
    trav(a,T.adj[cur]) if (a != pre && a != maxSub.s) solve(ind,a,dist+1,cur);
    modi(seq.back().s,-1); seq.pop_back();
    reverse(all(del)); 
    trav(a,del) {
        seq.pb(a);
        modi(seq.back().s,1);
    }
}

void genLen(int x, int y) {
    len[x] = 0;
    trav(i,T.adj[x]) if (i != y) {
        genLen(i,x);
        ckmax(len[x],len[i]+1);
    }
}

int main() {
    // you should actually read the stuff at the bottom
    setIO(); re(T.n,M);
    F0R(i,T.n-1) {
        int a,b; re(a,b);
        T.addEdge(a,b);
    }
    FOR(i,1,T.n+1) re(c[i]);
    auto a = T.diameter();
    
    //ps("WHAT",a);
    
    genLen(a[0],-1);
    solve(0,a[0],0,-1);
    // ps("HUH",sz(seq));
    genLen(a[1],-1);
    solve(1,a[1],0,-1);
    //FOR(i,1,T.n+1) ps("HUH",ans[i][0],ans[i][1]);
    FOR(i,1,T.n+1) ps(max(ans[i][0],ans[i][1]).s);
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?), set tle
    * do smth instead of nothing and stay organized
*/

Compilation message

joi2019_ho_t5.cpp: In function 'void io::setIn(std::__cxx11::string)':
joi2019_ho_t5.cpp:112:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void io::setOut(std::__cxx11::string)':
joi2019_ho_t5.cpp:113:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 9 ms 5888 KB Output is correct
2 Correct 11 ms 6016 KB Output is correct
3 Correct 18 ms 6144 KB Output is correct
4 Correct 20 ms 6144 KB Output is correct
5 Correct 12 ms 6016 KB Output is correct
6 Correct 37 ms 6400 KB Output is correct
7 Correct 18 ms 6144 KB Output is correct
8 Correct 11 ms 6016 KB Output is correct
9 Correct 10 ms 6016 KB Output is correct
10 Correct 9 ms 6016 KB Output is correct
11 Correct 10 ms 6016 KB Output is correct
12 Correct 10 ms 6016 KB Output is correct
13 Correct 44 ms 6272 KB Output is correct
14 Correct 13 ms 6272 KB Output is correct
15 Correct 14 ms 6136 KB Output is correct
16 Correct 9 ms 6016 KB Output is correct
17 Correct 22 ms 6272 KB Output is correct
18 Correct 15 ms 6144 KB Output is correct
19 Correct 9 ms 6016 KB Output is correct
20 Correct 36 ms 6528 KB Output is correct
21 Correct 23 ms 6144 KB Output is correct
22 Correct 12 ms 6016 KB Output is correct
23 Correct 10 ms 6016 KB Output is correct
24 Correct 11 ms 6016 KB Output is correct
25 Correct 11 ms 6016 KB Output is correct
26 Correct 11 ms 6016 KB Output is correct
27 Correct 20 ms 6272 KB Output is correct
28 Correct 23 ms 6264 KB Output is correct
29 Correct 13 ms 6144 KB Output is correct
30 Correct 9 ms 6016 KB Output is correct
31 Correct 22 ms 6272 KB Output is correct
32 Correct 19 ms 6144 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 269 ms 14592 KB Output is correct
2 Execution timed out 2060 ms 33520 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 458 ms 19320 KB Output is correct
2 Execution timed out 2020 ms 53248 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 9 ms 5888 KB Output is correct
2 Correct 11 ms 6016 KB Output is correct
3 Correct 18 ms 6144 KB Output is correct
4 Correct 20 ms 6144 KB Output is correct
5 Correct 12 ms 6016 KB Output is correct
6 Correct 37 ms 6400 KB Output is correct
7 Correct 18 ms 6144 KB Output is correct
8 Correct 11 ms 6016 KB Output is correct
9 Correct 10 ms 6016 KB Output is correct
10 Correct 9 ms 6016 KB Output is correct
11 Correct 10 ms 6016 KB Output is correct
12 Correct 10 ms 6016 KB Output is correct
13 Correct 44 ms 6272 KB Output is correct
14 Correct 13 ms 6272 KB Output is correct
15 Correct 14 ms 6136 KB Output is correct
16 Correct 9 ms 6016 KB Output is correct
17 Correct 22 ms 6272 KB Output is correct
18 Correct 15 ms 6144 KB Output is correct
19 Correct 9 ms 6016 KB Output is correct
20 Correct 36 ms 6528 KB Output is correct
21 Correct 23 ms 6144 KB Output is correct
22 Correct 12 ms 6016 KB Output is correct
23 Correct 10 ms 6016 KB Output is correct
24 Correct 11 ms 6016 KB Output is correct
25 Correct 11 ms 6016 KB Output is correct
26 Correct 11 ms 6016 KB Output is correct
27 Correct 20 ms 6272 KB Output is correct
28 Correct 23 ms 6264 KB Output is correct
29 Correct 13 ms 6144 KB Output is correct
30 Correct 9 ms 6016 KB Output is correct
31 Correct 22 ms 6272 KB Output is correct
32 Correct 19 ms 6144 KB Output is correct
33 Correct 269 ms 14592 KB Output is correct
34 Execution timed out 2060 ms 33520 KB Time limit exceeded
35 Halted 0 ms 0 KB -