제출 #988230

#제출 시각아이디문제언어결과실행 시간메모리
988230vjudge1Knapsack (NOI18_knapsack)C++14
0 / 100
4 ms348 KiB
#pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <x86intrin.h> #include <bits/stdc++.h> using namespace std; using str = string; using ll = long long; using ld = long double; using ull = unsigned long long; template<class T> using pr = pair<T, T>; template<class T> using vt = vector<T>; template<class T> using vvt = vector<vt<T>>; #define ar array #define pb push_back #define ff first #define umap unordered_map #define ss second #define all(c) (c).begin(), (c).end() #define len(x) (int)(x).size() #define elif else if #define def function #define mset multiset #define uset unordered_set #define umap unordered_map #define ube upper_bound #define lbe lower_bound #define pq priority_queue #define F_OR(i, a, b, s) for (int i=(a); (s)>0?i<(b):i>(b); i+=(s)) #define F_OR1(e) F_OR(i, 0, e, 1) #define F_OR2(i, e) F_OR(i, 0, e, 1) #define F_OR3(i, b, e) F_OR(i, b, e, 1) #define F_OR4(i, b, e, s) F_OR(i, b, e, s) #define GET5(a, b, c, d, e, ...) e #define F_ORC(...) GET5(__VA_ARGS__, F_OR4, F_OR3, F_OR2, F_OR1) #define rep(...) F_ORC(__VA_ARGS__)(__VA_ARGS__) #define each(x, a) for (auto& x: a) #define r_each(x,a) for(auto& x:a | views::reverse) template<class T> constexpr T inf = 0; template<> constexpr int inf<int> = 1'000'000'005; template<> constexpr long long inf<long long> = (long long) (inf<int>) * inf<int> * 2; template<> constexpr unsigned int inf<unsigned int> = inf<int>; template<> constexpr unsigned long long inf<unsigned long long> = inf<long long>; template<> constexpr __int128 inf<__int128> = __int128(inf<long long>) * inf<long long>; template<> constexpr double inf<double> = inf<long long>; template<> constexpr long double inf<long double> = inf<long long>; template<class T, class S> inline bool ctmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template<class T, class S> inline bool ctmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;} template<typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;} template<typename T> ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int) v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;} template<typename T> istream &operator>>(istream &is, vector<T> &v) {for (auto &x: v) is >> x;return is;} void read() {} template<typename T, class... U> void read(T &t, U &...u) {cin >> t;read(u...);} void print() { cout << "\n"; } template<typename T, class... U, char sep = ' '> void print(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;print(u...);} void write() { cout << " "; } template<typename T, class... U, char sep = ' '> void write(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;write(u...);} #define Int(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define Ll(...) \ long long __VA_ARGS__; \ read(__VA_ARGS__) #define Ull(...) \ unsigned long long __VA_ARGS__; \ read(__VA_ARGS__) #define Ld(...) \ long double __VA_ARGS__; \ read(__VA_ARGS__) #define Str(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define Vt(type, name, size) \ vector<type> name(size); \ read(name) #define Die(...) \ do { \ print(__VA_ARGS__); \ return; \ } while (0) __attribute__((target("popcnt"))) inline int popcnt(const ull &a) { return _mm_popcnt_u64(a); } inline int lsb(const ull &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const ull &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const ull &a) { return a ? 63 - __builtin_clzll(a) : -1; } template<typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template<typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long Pw(int n) { return 1LL << n; } constexpr long long Msk(int n) { return (1LL << n) - 1; } template<typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids((int) A.size()); iota(ids.begin(), ids.end(), 0); sort(ids.begin(), ids.end(), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } void dusaco(string s) { ios_base::sync_with_stdio(0); cin.tie(0); freopen((s+".in").c_str(),"r",stdin); freopen((s+".out").c_str(),"w",stdout); } #define fastio ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0); #define testct Int(t_ct);while(t_ct--) namespace dbg{ // DEBUG BEGIN #ifndef ONLINE_JUDGE template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << "{" << p.first << ", " << p.second << "}"; } template<class Tuple, size_t N> struct _tuple_printer{ static ostream &_print(ostream &out, const Tuple &t){ return _tuple_printer<Tuple, N-1>::_print(out, t) << ", " << get<N-1>(t); } }; template<class Tuple> struct _tuple_printer<Tuple, 1>{ static ostream &_print(ostream &out, const Tuple& t){ return out << get<0>(t); } }; template<class... Args> ostream &_print_tuple(ostream &out, const tuple<Args...> &t){ return _tuple_printer<decltype(t), sizeof...(Args)>::_print(out << "{", t) << "}"; } template<class ...Args> ostream &operator<<(ostream &out, const tuple<Args...> &t){ return _print_tuple(out, t); } template<class T> ostream &operator<<(class enable_if<!is_same<T, string>::value, ostream>::type &out, const T &arr){ if(arr.empty()) return out << "{}"; out << "{"; for(auto it = arr.begin(); it != arr.end(); ++ it){ out << *it; next(it) != arr.end() ? out << ", " : out << "}"; } return out; } ostream &operator<<(ostream &out, const _Bit_reference &bit){ return out << bool(bit); } template<class T, class A, class C> ostream &operator<<(ostream &out, priority_queue<T, A, C> pq){ vector<T> a; while(!pq.empty()) a.push_back(pq.top()), pq.pop(); return out << a; } template<class Head> void debug_out(Head H){ cerr << H << endl; } template<class Head, class... Tail> void debug_out(Head H, Tail... T){ cerr << H << ", ", debug_out(T...); } void debug2_out(){ } template<class Head, class... Tail> void debug2_out(Head H, Tail... T){ cerr << "\n"; for(auto x: H) cerr << x << ",\n"; debug2_out(T...); } template<class Width, class Head> void debugbin_out(Width w, Head H){ for(auto rep = w; rep; -- rep, H >>= 1) cerr << (H & 1); cerr << endl; } template<class Width, class Head, class... Tail> void debugbin_out(Width w, Head H, Tail... T){ for(auto rep = w; rep; -- rep, H >>= 1) cerr << (H & 1); cerr << ", "; debugbin_out(w, T...); } enum CODE{ CCRED = 31, CCGREEN = 32, CCYELLOW = 33, CCBLUE = 34, CCDEFAULT = 39 }; #define debug_endl() cerr << endl #define debug(...) cerr << "\033[" << (int)CODE(CCRED) << "m[" << #__VA_ARGS__ << "]: \033[" << (int)CODE(CCBLUE) << "m", debug_out(__VA_ARGS__), cerr << "\33[" << (int)CODE(CCDEFAULT) << "m" #define debug2(...) cerr << "\033[" << (int)CODE(CCRED) << "m[" << #__VA_ARGS__ << "] \033[" << (int)CODE(CCBLUE) << "m", debug2_out(__VA_ARGS__), cerr << "\33[" << (int)CODE(CCDEFAULT) << "m" #define debugbin(...) cerr << "\033[" << (int)CODE(CCRED) << "m[" << #__VA_ARGS__ << "] \033[" << (int)CODE(CCBLUE) << "m", debugbin_out(__VA_ARGS__), cerr << "\33[" << (int)CODE(CCDEFAULT) << "m" #else #define debug_endl() 42 #define debug(...) 42 #define debug2(...) 42 #define debugbin(...) 42 #endif // DEBUG END } using namespace dbg; // Integer factorization in O(N^{1/4} // uses squfof from msieve https://github.com/radii/msieve // with fixes to work for n = p^3 // works up to 10^18 // probably fails on 5003^5 which is ~10^{18.5} namespace Factor { template<typename T, typename SFINAE = void> struct bigger_type{}; template<typename T> using bigger_type_t = typename bigger_type<T>::type; template<typename T> struct bigger_type<T, typename enable_if<is_integral<T>::value && is_signed<T>::value && sizeof(T) == 4>::type>{using type = long long;}; template<typename T> struct bigger_type<T, typename enable_if<is_integral<T>::value && !is_signed<T>::value && sizeof(T) == 4>::type>{using type = unsigned long long;}; template<typename T> struct bigger_type<T, typename enable_if<is_integral<T>::value && is_signed<T>::value && sizeof(T) == 8>::type>{using type = __int128;}; template<typename T> struct bigger_type<T, typename enable_if<is_integral<T>::value && !is_signed<T>::value && sizeof(T) == 8>::type>{using type = unsigned __int128;}; template<typename int_t = unsigned long long> struct Mod_Int{ static inline int_t add(int_t const&a, int_t const&b, int_t const&mod){ int_t ret = a+b; if(ret>=mod) ret-=mod; return ret; } static inline int_t sub(int_t const&a, int_t const&b, int_t const&mod){ return add(a, mod-b); } static inline int_t mul(int_t const&a, int_t const&b, int_t const&mod){ return a*static_cast<bigger_type_t<int_t>>(b)%mod; } static inline int_t pow(int_t const&a, int_t const&b, int_t const&mod){ int_t ret = 1; int_t base = a; for(int i=0;b>>i;++i){ if((b>>i)&1) ret = mul(ret, base, mod); base = mul(base, base, mod); } return ret; } }; template<typename T> bool is_prime(T x){ static_assert(is_integral<T>::value); if(x<T(4)) return x>T(1); for(T i=2;i*i<=x;++i){ if(x%i == 0) return false; } return true; } template<typename T> bool miller_rabin_single(T const&x, T base){ static_assert(is_integral<T>::value); if(x<T(4)) return x>T(1); if(x%2 == 0) return false; base%=x; if(base == 0) return true; T xm1 = x-1; int j = 1; T d = xm1/2; while(d%2 == 0){ // could use __builtin_ctz d/=2; ++j; } T t = Mod_Int<T>::pow(base, d, x); if(t==T(1) || t==T(xm1)) return true; for(int k=1;k<j;++k){ t = Mod_Int<T>::mul(t, t, x); if(t == xm1) return true; if(t<=1) break; } return false; } template<typename T> bool miller_rabin_multi(T const&){return true;} template<typename T, typename... S> bool miller_rabin_multi(T const&x, T const&base, S const&...bases){ static_assert(is_integral<T>::value); if(!miller_rabin_single(x, base)) return false; return miller_rabin_multi(x, bases...); } template<typename T> bool miller_rabin(T const&x){ static_assert(is_integral<T>::value); if(x < 316349281) return miller_rabin_multi(x, T(11000544), T(31481107)); if(x < 4759123141ull) return miller_rabin_multi(x, T(2), T(7), T(61)); return miller_rabin_multi(x, T(2), T(325), T(9375), T(28178), T(450775), T(9780504), T(1795265022)); } template<typename T> T isqrt(T const&x){ static_assert(is_integral<T>::value); assert(x>=T(0)); T ret = static_cast<T>(sqrtl(x)); while(ret>0 && ret*ret>x) --ret; while(x-ret*ret>2*ret) ++ret; return ret; } template<typename T> T icbrt(T const&x){ static_assert(is_integral<T>::value); assert(x>=T(0)); T ret = static_cast<T>(cbrt(x)); while(ret>0 && ret*ret*ret>x) --ret; while(x-ret*ret*ret>3*ret*(ret+1)) ++ret; return ret; } uint64_t isqrt(unsigned __int128 const&x){ unsigned __int128 ret = sqrtl(x); while(ret>0 && ret*ret>x) --ret; while(x-ret*ret>2*ret) ++ret; return ret; } vector<uint16_t> saved; // fast prime factorization from // https://github.com/radii/msieve uint64_t squfof_iter_better(uint64_t const&x, uint64_t const&k, uint64_t const&it_max, uint32_t cutoff_div){ if(__gcd((uint64_t)k, x)!=1) return __gcd((uint64_t)k, x); //cerr << "try: " << x << " " << k << "\n"; saved.clear(); uint64_t scaledn = k*x; if(scaledn>>62) return 1; uint32_t sqrtn = isqrt(scaledn); uint32_t cutoff = isqrt(2*sqrtn)/cutoff_div; uint32_t q0 = 1; uint32_t p1 = sqrtn; uint32_t q1 = scaledn-p1*p1; if(q1 == 0){ uint64_t factor = __gcd(x, (uint64_t)p1); return factor==x ? 1:factor; } uint32_t multiplier = 2*k; uint32_t coarse_cutoff = cutoff * multiplier; //cerr << "at: " << multiplier << "\n"; uint32_t i, j; uint32_t p0 = 0; uint32_t sqrtq = 0; for(i=0;i<it_max;++i){ uint32_t q, bits, tmp; tmp = sqrtn + p1 - q1; q = 1; if (tmp >= q1) q += tmp / q1; p0 = q * q1 - p1; q0 = q0 + (p1 - p0) * q; if (q1 < coarse_cutoff) { tmp = q1 / __gcd(q1, multiplier); if (tmp < cutoff) { saved.push_back((uint16_t)tmp); } } bits = 0; tmp = q0; while(!(tmp & 1)) { bits++; tmp >>= 1; } if (!(bits & 1) && ((tmp & 7) == 1)) { sqrtq = (uint32_t)isqrt(q0); if (sqrtq * sqrtq == q0) { for(j=0;j<saved.size();++j){ if(saved[j] == sqrtq) break; } if(j == saved.size()) break; //else cerr << "skip " << i << "\n";; } } tmp = sqrtn + p0 - q0; q = 1; if (tmp >= q0) q += tmp / q0; p1 = q * q0 - p0; q1 = q1 + (p0 - p1) * q; if (q0 < coarse_cutoff) { tmp = q0 / __gcd(q0, multiplier); if (tmp < cutoff) { saved.push_back((uint16_t) tmp); } } } if(sqrtq == 1) { return 1;} if(i == it_max) { return 1;} q0 = sqrtq; p1 = p0 + sqrtq * ((sqrtn - p0) / sqrtq); q1 = (scaledn - (uint64_t)p1 * (uint64_t)p1) / (uint64_t)q0; for(j=0;j<it_max;++j) { uint32_t q, tmp; tmp = sqrtn + p1 - q1; q = 1; if (tmp >= q1) q += tmp / q1; p0 = q * q1 - p1; q0 = q0 + (p1 - p0) * q; if (p0 == p1) { q0 = q1; break; } tmp = sqrtn + p0 - q0; q = 1; if (tmp >= q0) q += tmp / q0; p1 = q * q0 - p0; q1 = q1 + (p0 - p1) * q; if (p0 == p1) break; } if(j==it_max) {cerr << "RNG\n"; return 1;} // random fail uint64_t factor = __gcd((uint64_t)q0, x); if(factor == x) factor=1; return factor; } uint64_t squfof(uint64_t const&x){ static array<uint32_t, 16> multipliers{1, 3, 5, 7, 11, 3*5, 3*7, 3*11, 5*7, 5*11, 7*11, 3*5*7, 3*5*11, 3*7*11, 5*7*11, 3*5*7*11}; uint64_t cbrt_x = icbrt(x); if(cbrt_x*cbrt_x*cbrt_x == x) return cbrt_x; //uint32_t iter_lim = isqrt(isqrt(x))+10; uint32_t iter_lim = 300; for(uint32_t iter_fact = 1;iter_fact<20000;iter_fact*=4){ for(uint32_t const&k : multipliers){ if(numeric_limits<uint64_t>::max()/k<=x) continue; //would overflow uint32_t const it_max = iter_fact*iter_lim; uint64_t factor = squfof_iter_better(x, k, it_max, 1); if(factor==1 || factor==x) continue; return factor; } } cerr << "failed to factor: " << x << "\n"; assert(0); return 1; } template<typename T> vector<T> factorize(T x){ static_assert(is_integral<T>::value); vector<T> ret; const uint32_t trial_limit = 5000; auto trial = [&](int i){while(x%i == 0){x/=i; ret.push_back(i);}}; trial(2); trial(3); for(uint32_t i=5, j=2;i<trial_limit && i*i <= x;i+=j, j=6-j){ trial(i); } if(x>1){ static stack<T> s; s.push(x); while(!s.empty()){ x = s.top(); s.pop(); if(!miller_rabin(x)){ T factor = squfof(x); if(factor == 1 || factor == x){assert(0); return ret;} s.push(factor); s.push(x/factor); } else { ret.push_back(x); } } } sort(ret.begin(), ret.end()); return ret; } int64_t euclid_invert(int64_t a, int64_t mod){ a%=mod; int64_t b = mod, x = 0, x2 = 1, y = 1, y2 = 0, tmp; while(b){ int64_t q = a / b, r = a % b; tmp = x; x = x2 - q * x; x2 = tmp; tmp = y; y = y2 - q * y; y2 = tmp; a = b; b = r; } if(x2<0) x2+=mod; return x2; } // baby and giant step int64_t disc_log(int64_t base, int64_t x, int64_t p, int64_t limit){ int64_t block = sqrt(limit); vector<pair<int64_t, int> > small; int64_t a = 1; for(int i=0;i<block;++i){ small.emplace_back(a, i); a = Mod_Int<int64_t>::mul(a, base, p); } sort(small.begin(), small.end()); int64_t big_base = euclid_invert(a, p); a = x; for(int j=0;;++j){ auto it = lower_bound(small.begin(), small.end(), make_pair(a, -1)); if(it != small.end() && it->first == a){ return j*block + it->second; } a = Mod_Int<int64_t>::mul(a, big_base, p); } assert(0); return 0; } // solves x^exp = a (mod p) // exp and p have to be prime // returns -1 if there is no solution int64_t root_extraction(int64_t a, int64_t exp, int64_t p){ assert(miller_rabin(exp)); assert(miller_rabin(p)); if(a == 0) return 0; if(__gcd(exp, p-1) == 1){ int64_t exp_inv = euclid_invert(exp, p-1); assert((p-1 == 1) || exp_inv * (__int128)exp % (p-1) == 1); return Mod_Int<int64_t>::pow(a, exp_inv, p); } // now exp divides (p-1) if(Mod_Int<int64_t>::pow(a, (p-1)/exp, p)!=1){ // no solutions return -1; } // find non-redidue int64_t res = 2; while(Mod_Int<int64_t>::pow(res, (p-1)/exp, p) == 1) ++res; int t = 0; int64_t s = p-1; while(s%exp == 0){ s/=exp; ++t; } int64_t alph = euclid_invert(exp, s); int64_t A = Mod_Int<int64_t>::pow(res, (p-1)/exp, p); int64_t B = Mod_Int<int64_t>::pow(a, alph*exp, p); B = Mod_Int<int64_t>::mul(B, euclid_invert(a, p), p); int64_t C = Mod_Int<int64_t>::pow(res, s, p); int64_t h = 1; for(int i=1;i<t;++i){ int64_t d = Mod_Int<int64_t>::pow(B, Mod_Int<int64_t>::pow(exp, t-1-i, p-1), p); int64_t j = 0; if(d!=1){ j = disc_log(A, d, p, exp); } B = Mod_Int<int64_t>::mul(B, euclid_invert(Mod_Int<int64_t>::pow(C, Mod_Int<int64_t>::mul(exp, j, p-1), p), p), p); h = Mod_Int<int64_t>::mul(h, euclid_invert(Mod_Int<int64_t>::pow(C, j, p), p), p); C = Mod_Int<int64_t>::pow(C, exp, p); } int64_t ret = Mod_Int<int64_t>::mul(Mod_Int<int64_t>::pow(a, alph, p), h, p); return ret; } } void solve(){ Ll(s,n); vvt<pr<ll>> w(s+5); rep(n){ Ll(v,we,k); w[we].pb({v,k}); } debug(w); vt<pr<ll>> v; rep(s+2){ if(w[i].empty()) continue; sort(all(w[i])); ll ct=(s+i-1)/i; for(;w[i].size() && ct--;){ w[i].back().ss--; v.pb({i,w[i].back().ff}); if(!w[i].back().ss) w[i].pop_back(); } } vt<ll> dp(s+10,0); dp[0]=0; rep(v.size()){ rep(j,s+5,v[i].ff,-1){ ctmax(dp[j],dp[j-v[i].ff]+v[i].ss); } } ll res=0; rep(s+1) ctmax(res,dp[i]);print(res); } int main(){ fastio solve(); }

컴파일 시 표준 에러 (stderr) 메시지

knapsack.cpp: In function 'void solve()':
knapsack.cpp:36:49: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<long long int, long long int>, std::allocator<std::pair<long long int, long long int> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   36 | #define F_OR(i, a, b, s) for (int i=(a); (s)>0?i<(b):i>(b); i+=(s))
      |                                                 ^
knapsack.cpp:37:18: note: in expansion of macro 'F_OR'
   37 | #define F_OR1(e) F_OR(i, 0, e, 1)
      |                  ^~~~
knapsack.cpp:41:34: note: in expansion of macro 'F_OR1'
   41 | #define GET5(a, b, c, d, e, ...) e
      |                                  ^
knapsack.cpp:42:20: note: in expansion of macro 'GET5'
   42 | #define F_ORC(...) GET5(__VA_ARGS__, F_OR4, F_OR3, F_OR2, F_OR1)
      |                    ^~~~
knapsack.cpp:43:18: note: in expansion of macro 'F_ORC'
   43 | #define rep(...) F_ORC(__VA_ARGS__)(__VA_ARGS__)
      |                  ^~~~~
knapsack.cpp:611:5: note: in expansion of macro 'rep'
  611 |     rep(v.size()){
      |     ^~~
knapsack.cpp:36:26: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
   36 | #define F_OR(i, a, b, s) for (int i=(a); (s)>0?i<(b):i>(b); i+=(s))
      |                          ^~~
knapsack.cpp:37:18: note: in expansion of macro 'F_OR'
   37 | #define F_OR1(e) F_OR(i, 0, e, 1)
      |                  ^~~~
knapsack.cpp:41:34: note: in expansion of macro 'F_OR1'
   41 | #define GET5(a, b, c, d, e, ...) e
      |                                  ^
knapsack.cpp:42:20: note: in expansion of macro 'GET5'
   42 | #define F_ORC(...) GET5(__VA_ARGS__, F_OR4, F_OR3, F_OR2, F_OR1)
      |                    ^~~~
knapsack.cpp:43:18: note: in expansion of macro 'F_ORC'
   43 | #define rep(...) F_ORC(__VA_ARGS__)(__VA_ARGS__)
      |                  ^~~~~
knapsack.cpp:617:5: note: in expansion of macro 'rep'
  617 |     rep(s+1) ctmax(res,dp[i]);print(res);
      |     ^~~
knapsack.cpp:617:31: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  617 |     rep(s+1) ctmax(res,dp[i]);print(res);
      |                               ^~~~~
knapsack.cpp: In instantiation of 'bool Factor::miller_rabin(const T&) [with T = long int]':
knapsack.cpp:545:9:   required from here
knapsack.cpp:295:14: warning: comparison of integer expressions of different signedness: 'const long int' and 'long long unsigned int' [-Wsign-compare]
  295 |         if(x < 4759123141ull) return miller_rabin_multi(x, T(2), T(7), T(61));
      |            ~~^~~~~~~~~~~~~~~
knapsack.cpp: In function 'void dusaco(std::string)':
knapsack.cpp:137:12: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  137 |     freopen((s+".in").c_str(),"r",stdin);
      |     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
knapsack.cpp:138:12: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  138 |     freopen((s+".out").c_str(),"w",stdout);
      |     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...