Submission #987989

# Submission time Handle Problem Language Result Execution time Memory
987989 2024-05-23T20:08:43 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
194 ms 46264 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6492 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 4 ms 8572 KB Output is correct
4 Correct 5 ms 5592 KB Output is correct
5 Correct 5 ms 6644 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8536 KB Output is correct
8 Correct 5 ms 5600 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 5 ms 5592 KB Output is correct
11 Correct 3 ms 8024 KB Output is correct
12 Correct 4 ms 6236 KB Output is correct
13 Correct 4 ms 5468 KB Output is correct
14 Correct 5 ms 6488 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 6492 KB Output is correct
18 Correct 3 ms 6488 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 6 ms 5720 KB Output is correct
21 Correct 3 ms 5976 KB Output is correct
22 Correct 5 ms 6488 KB Output is correct
23 Correct 6 ms 6488 KB Output is correct
24 Correct 5 ms 5208 KB Output is correct
25 Correct 4 ms 5208 KB Output is correct
26 Correct 6 ms 6492 KB Output is correct
27 Correct 7 ms 5592 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 77 ms 23992 KB Output is correct
2 Correct 81 ms 23852 KB Output is correct
3 Correct 65 ms 23768 KB Output is correct
4 Correct 64 ms 23732 KB Output is correct
5 Correct 62 ms 14836 KB Output is correct
6 Correct 59 ms 15416 KB Output is correct
7 Correct 68 ms 23636 KB Output is correct
8 Correct 62 ms 22456 KB Output is correct
9 Correct 16 ms 6488 KB Output is correct
10 Correct 71 ms 23024 KB Output is correct
11 Correct 15 ms 5724 KB Output is correct
12 Correct 32 ms 6620 KB Output is correct
13 Correct 75 ms 23568 KB Output is correct
14 Correct 66 ms 25260 KB Output is correct
15 Correct 16 ms 6744 KB Output is correct
16 Correct 90 ms 22740 KB Output is correct
17 Correct 69 ms 22696 KB Output is correct
18 Correct 32 ms 6360 KB Output is correct
19 Correct 85 ms 23064 KB Output is correct
20 Correct 72 ms 24832 KB Output is correct
21 Correct 21 ms 5860 KB Output is correct
22 Correct 65 ms 15056 KB Output is correct
23 Correct 65 ms 23064 KB Output is correct
24 Correct 21 ms 5760 KB Output is correct
25 Correct 21 ms 5724 KB Output is correct
26 Correct 60 ms 17056 KB Output is correct
27 Correct 67 ms 14560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6492 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 4 ms 8572 KB Output is correct
4 Correct 5 ms 5592 KB Output is correct
5 Correct 5 ms 6644 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8536 KB Output is correct
8 Correct 5 ms 5600 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 5 ms 5592 KB Output is correct
11 Correct 3 ms 8024 KB Output is correct
12 Correct 4 ms 6236 KB Output is correct
13 Correct 4 ms 5468 KB Output is correct
14 Correct 5 ms 6488 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 6492 KB Output is correct
18 Correct 3 ms 6488 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 6 ms 5720 KB Output is correct
21 Correct 3 ms 5976 KB Output is correct
22 Correct 5 ms 6488 KB Output is correct
23 Correct 6 ms 6488 KB Output is correct
24 Correct 5 ms 5208 KB Output is correct
25 Correct 4 ms 5208 KB Output is correct
26 Correct 6 ms 6492 KB Output is correct
27 Correct 7 ms 5592 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 77 ms 23992 KB Output is correct
30 Correct 81 ms 23852 KB Output is correct
31 Correct 65 ms 23768 KB Output is correct
32 Correct 64 ms 23732 KB Output is correct
33 Correct 62 ms 14836 KB Output is correct
34 Correct 59 ms 15416 KB Output is correct
35 Correct 68 ms 23636 KB Output is correct
36 Correct 62 ms 22456 KB Output is correct
37 Correct 16 ms 6488 KB Output is correct
38 Correct 71 ms 23024 KB Output is correct
39 Correct 15 ms 5724 KB Output is correct
40 Correct 32 ms 6620 KB Output is correct
41 Correct 75 ms 23568 KB Output is correct
42 Correct 66 ms 25260 KB Output is correct
43 Correct 16 ms 6744 KB Output is correct
44 Correct 90 ms 22740 KB Output is correct
45 Correct 69 ms 22696 KB Output is correct
46 Correct 32 ms 6360 KB Output is correct
47 Correct 85 ms 23064 KB Output is correct
48 Correct 72 ms 24832 KB Output is correct
49 Correct 21 ms 5860 KB Output is correct
50 Correct 65 ms 15056 KB Output is correct
51 Correct 65 ms 23064 KB Output is correct
52 Correct 21 ms 5760 KB Output is correct
53 Correct 21 ms 5724 KB Output is correct
54 Correct 60 ms 17056 KB Output is correct
55 Correct 67 ms 14560 KB Output is correct
56 Correct 143 ms 31280 KB Output is correct
57 Correct 151 ms 28872 KB Output is correct
58 Correct 144 ms 29704 KB Output is correct
59 Correct 145 ms 26780 KB Output is correct
60 Correct 164 ms 23080 KB Output is correct
61 Correct 168 ms 30164 KB Output is correct
62 Correct 149 ms 25388 KB Output is correct
63 Correct 134 ms 23640 KB Output is correct
64 Correct 59 ms 7932 KB Output is correct
65 Correct 151 ms 28760 KB Output is correct
66 Correct 88 ms 9332 KB Output is correct
67 Correct 51 ms 10172 KB Output is correct
68 Correct 86 ms 24104 KB Output is correct
69 Correct 166 ms 29512 KB Output is correct
70 Correct 15 ms 7000 KB Output is correct
71 Correct 80 ms 26408 KB Output is correct
72 Correct 132 ms 26680 KB Output is correct
73 Correct 14 ms 8792 KB Output is correct
74 Correct 70 ms 15792 KB Output is correct
75 Correct 175 ms 31256 KB Output is correct
76 Correct 21 ms 6696 KB Output is correct
77 Correct 74 ms 15416 KB Output is correct
78 Correct 108 ms 24728 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 8664 KB Output is correct
2 Correct 45 ms 7384 KB Output is correct
3 Correct 19 ms 6744 KB Output is correct
4 Correct 18 ms 5976 KB Output is correct
5 Correct 154 ms 30668 KB Output is correct
6 Correct 164 ms 29224 KB Output is correct
7 Correct 150 ms 29940 KB Output is correct
8 Correct 153 ms 28744 KB Output is correct
9 Correct 190 ms 30704 KB Output is correct
10 Correct 180 ms 29140 KB Output is correct
11 Correct 144 ms 27868 KB Output is correct
12 Correct 153 ms 28588 KB Output is correct
13 Correct 101 ms 12352 KB Output is correct
14 Correct 152 ms 29232 KB Output is correct
15 Correct 186 ms 29320 KB Output is correct
16 Correct 63 ms 15808 KB Output is correct
17 Correct 88 ms 25988 KB Output is correct
18 Correct 194 ms 29452 KB Output is correct
19 Correct 74 ms 26180 KB Output is correct
20 Correct 79 ms 23368 KB Output is correct
21 Correct 149 ms 28732 KB Output is correct
22 Correct 70 ms 15740 KB Output is correct
23 Correct 78 ms 23880 KB Output is correct
24 Correct 190 ms 31808 KB Output is correct
25 Correct 63 ms 24436 KB Output is correct
26 Correct 73 ms 24224 KB Output is correct
27 Correct 132 ms 27468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6492 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 4 ms 8572 KB Output is correct
4 Correct 5 ms 5592 KB Output is correct
5 Correct 5 ms 6644 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8536 KB Output is correct
8 Correct 5 ms 5600 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 5 ms 5592 KB Output is correct
11 Correct 3 ms 8024 KB Output is correct
12 Correct 4 ms 6236 KB Output is correct
13 Correct 4 ms 5468 KB Output is correct
14 Correct 5 ms 6488 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 6492 KB Output is correct
18 Correct 3 ms 6488 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 6 ms 5720 KB Output is correct
21 Correct 3 ms 5976 KB Output is correct
22 Correct 5 ms 6488 KB Output is correct
23 Correct 6 ms 6488 KB Output is correct
24 Correct 5 ms 5208 KB Output is correct
25 Correct 4 ms 5208 KB Output is correct
26 Correct 6 ms 6492 KB Output is correct
27 Correct 7 ms 5592 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 77 ms 23992 KB Output is correct
30 Correct 81 ms 23852 KB Output is correct
31 Correct 65 ms 23768 KB Output is correct
32 Correct 64 ms 23732 KB Output is correct
33 Correct 62 ms 14836 KB Output is correct
34 Correct 59 ms 15416 KB Output is correct
35 Correct 68 ms 23636 KB Output is correct
36 Correct 62 ms 22456 KB Output is correct
37 Correct 16 ms 6488 KB Output is correct
38 Correct 71 ms 23024 KB Output is correct
39 Correct 15 ms 5724 KB Output is correct
40 Correct 32 ms 6620 KB Output is correct
41 Correct 75 ms 23568 KB Output is correct
42 Correct 66 ms 25260 KB Output is correct
43 Correct 16 ms 6744 KB Output is correct
44 Correct 90 ms 22740 KB Output is correct
45 Correct 69 ms 22696 KB Output is correct
46 Correct 32 ms 6360 KB Output is correct
47 Correct 85 ms 23064 KB Output is correct
48 Correct 72 ms 24832 KB Output is correct
49 Correct 21 ms 5860 KB Output is correct
50 Correct 65 ms 15056 KB Output is correct
51 Correct 65 ms 23064 KB Output is correct
52 Correct 21 ms 5760 KB Output is correct
53 Correct 21 ms 5724 KB Output is correct
54 Correct 60 ms 17056 KB Output is correct
55 Correct 67 ms 14560 KB Output is correct
56 Correct 143 ms 31280 KB Output is correct
57 Correct 151 ms 28872 KB Output is correct
58 Correct 144 ms 29704 KB Output is correct
59 Correct 145 ms 26780 KB Output is correct
60 Correct 164 ms 23080 KB Output is correct
61 Correct 168 ms 30164 KB Output is correct
62 Correct 149 ms 25388 KB Output is correct
63 Correct 134 ms 23640 KB Output is correct
64 Correct 59 ms 7932 KB Output is correct
65 Correct 151 ms 28760 KB Output is correct
66 Correct 88 ms 9332 KB Output is correct
67 Correct 51 ms 10172 KB Output is correct
68 Correct 86 ms 24104 KB Output is correct
69 Correct 166 ms 29512 KB Output is correct
70 Correct 15 ms 7000 KB Output is correct
71 Correct 80 ms 26408 KB Output is correct
72 Correct 132 ms 26680 KB Output is correct
73 Correct 14 ms 8792 KB Output is correct
74 Correct 70 ms 15792 KB Output is correct
75 Correct 175 ms 31256 KB Output is correct
76 Correct 21 ms 6696 KB Output is correct
77 Correct 74 ms 15416 KB Output is correct
78 Correct 108 ms 24728 KB Output is correct
79 Correct 42 ms 8664 KB Output is correct
80 Correct 45 ms 7384 KB Output is correct
81 Correct 19 ms 6744 KB Output is correct
82 Correct 18 ms 5976 KB Output is correct
83 Correct 154 ms 30668 KB Output is correct
84 Correct 164 ms 29224 KB Output is correct
85 Correct 150 ms 29940 KB Output is correct
86 Correct 153 ms 28744 KB Output is correct
87 Correct 190 ms 30704 KB Output is correct
88 Correct 180 ms 29140 KB Output is correct
89 Correct 144 ms 27868 KB Output is correct
90 Correct 153 ms 28588 KB Output is correct
91 Correct 101 ms 12352 KB Output is correct
92 Correct 152 ms 29232 KB Output is correct
93 Correct 186 ms 29320 KB Output is correct
94 Correct 63 ms 15808 KB Output is correct
95 Correct 88 ms 25988 KB Output is correct
96 Correct 194 ms 29452 KB Output is correct
97 Correct 74 ms 26180 KB Output is correct
98 Correct 79 ms 23368 KB Output is correct
99 Correct 149 ms 28732 KB Output is correct
100 Correct 70 ms 15740 KB Output is correct
101 Correct 78 ms 23880 KB Output is correct
102 Correct 190 ms 31808 KB Output is correct
103 Correct 63 ms 24436 KB Output is correct
104 Correct 73 ms 24224 KB Output is correct
105 Correct 132 ms 27468 KB Output is correct
106 Correct 46 ms 6336 KB Output is correct
107 Correct 45 ms 8900 KB Output is correct
108 Correct 38 ms 6936 KB Output is correct
109 Correct 56 ms 7680 KB Output is correct
110 Correct 182 ms 31612 KB Output is correct
111 Correct 181 ms 30752 KB Output is correct
112 Correct 160 ms 30556 KB Output is correct
113 Correct 193 ms 29404 KB Output is correct
114 Correct 186 ms 31808 KB Output is correct
115 Correct 174 ms 30268 KB Output is correct
116 Correct 186 ms 46264 KB Output is correct
117 Correct 177 ms 27652 KB Output is correct
118 Correct 112 ms 13660 KB Output is correct
119 Correct 69 ms 9280 KB Output is correct
120 Correct 182 ms 30000 KB Output is correct
121 Correct 81 ms 24500 KB Output is correct
122 Correct 91 ms 24376 KB Output is correct
123 Correct 183 ms 30756 KB Output is correct
124 Correct 74 ms 16372 KB Output is correct
125 Correct 96 ms 23976 KB Output is correct
126 Correct 167 ms 30000 KB Output is correct
127 Correct 66 ms 17600 KB Output is correct
128 Correct 84 ms 26584 KB Output is correct
129 Correct 172 ms 32332 KB Output is correct
130 Correct 81 ms 24204 KB Output is correct
131 Correct 83 ms 24092 KB Output is correct
132 Correct 152 ms 27772 KB Output is correct