Submission #987982

# Submission time Handle Problem Language Result Execution time Memory
987982 2024-05-23T20:05:15 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
208 ms 46076 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8576 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8524 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 7 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8280 KB Output is correct
19 Correct 3 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8496 KB Output is correct
28 Correct 4 ms 8536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 59 ms 26048 KB Output is correct
2 Correct 61 ms 25788 KB Output is correct
3 Correct 64 ms 25776 KB Output is correct
4 Correct 61 ms 25952 KB Output is correct
5 Correct 55 ms 17588 KB Output is correct
6 Correct 53 ms 17336 KB Output is correct
7 Correct 62 ms 25524 KB Output is correct
8 Correct 56 ms 25524 KB Output is correct
9 Correct 14 ms 6492 KB Output is correct
10 Correct 61 ms 23736 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 30 ms 9684 KB Output is correct
13 Correct 62 ms 25524 KB Output is correct
14 Correct 77 ms 25948 KB Output is correct
15 Correct 14 ms 8644 KB Output is correct
16 Correct 61 ms 25532 KB Output is correct
17 Correct 63 ms 25788 KB Output is correct
18 Correct 21 ms 9176 KB Output is correct
19 Correct 61 ms 25820 KB Output is correct
20 Correct 64 ms 26288 KB Output is correct
21 Correct 14 ms 8796 KB Output is correct
22 Correct 58 ms 16836 KB Output is correct
23 Correct 57 ms 25268 KB Output is correct
24 Correct 13 ms 8540 KB Output is correct
25 Correct 13 ms 8536 KB Output is correct
26 Correct 51 ms 18876 KB Output is correct
27 Correct 49 ms 18872 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8576 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8524 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 7 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8280 KB Output is correct
19 Correct 3 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8496 KB Output is correct
28 Correct 4 ms 8536 KB Output is correct
29 Correct 59 ms 26048 KB Output is correct
30 Correct 61 ms 25788 KB Output is correct
31 Correct 64 ms 25776 KB Output is correct
32 Correct 61 ms 25952 KB Output is correct
33 Correct 55 ms 17588 KB Output is correct
34 Correct 53 ms 17336 KB Output is correct
35 Correct 62 ms 25524 KB Output is correct
36 Correct 56 ms 25524 KB Output is correct
37 Correct 14 ms 6492 KB Output is correct
38 Correct 61 ms 23736 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 30 ms 9684 KB Output is correct
41 Correct 62 ms 25524 KB Output is correct
42 Correct 77 ms 25948 KB Output is correct
43 Correct 14 ms 8644 KB Output is correct
44 Correct 61 ms 25532 KB Output is correct
45 Correct 63 ms 25788 KB Output is correct
46 Correct 21 ms 9176 KB Output is correct
47 Correct 61 ms 25820 KB Output is correct
48 Correct 64 ms 26288 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 58 ms 16836 KB Output is correct
51 Correct 57 ms 25268 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 13 ms 8536 KB Output is correct
54 Correct 51 ms 18876 KB Output is correct
55 Correct 49 ms 18872 KB Output is correct
56 Correct 135 ms 31972 KB Output is correct
57 Correct 138 ms 30104 KB Output is correct
58 Correct 136 ms 30568 KB Output is correct
59 Correct 120 ms 29236 KB Output is correct
60 Correct 134 ms 24276 KB Output is correct
61 Correct 126 ms 30776 KB Output is correct
62 Correct 119 ms 28028 KB Output is correct
63 Correct 106 ms 26692 KB Output is correct
64 Correct 64 ms 10988 KB Output is correct
65 Correct 137 ms 30204 KB Output is correct
66 Correct 66 ms 11328 KB Output is correct
67 Correct 57 ms 12232 KB Output is correct
68 Correct 74 ms 26288 KB Output is correct
69 Correct 133 ms 30588 KB Output is correct
70 Correct 15 ms 9052 KB Output is correct
71 Correct 92 ms 26448 KB Output is correct
72 Correct 121 ms 29272 KB Output is correct
73 Correct 13 ms 8796 KB Output is correct
74 Correct 67 ms 18868 KB Output is correct
75 Correct 145 ms 32396 KB Output is correct
76 Correct 14 ms 8540 KB Output is correct
77 Correct 58 ms 17340 KB Output is correct
78 Correct 111 ms 26888 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 10700 KB Output is correct
2 Correct 36 ms 9688 KB Output is correct
3 Correct 15 ms 8792 KB Output is correct
4 Correct 17 ms 9048 KB Output is correct
5 Correct 178 ms 30528 KB Output is correct
6 Correct 153 ms 29328 KB Output is correct
7 Correct 165 ms 30244 KB Output is correct
8 Correct 140 ms 28716 KB Output is correct
9 Correct 150 ms 30768 KB Output is correct
10 Correct 167 ms 29272 KB Output is correct
11 Correct 143 ms 27700 KB Output is correct
12 Correct 119 ms 28600 KB Output is correct
13 Correct 122 ms 12540 KB Output is correct
14 Correct 146 ms 29492 KB Output is correct
15 Correct 175 ms 29492 KB Output is correct
16 Correct 65 ms 17916 KB Output is correct
17 Correct 74 ms 26036 KB Output is correct
18 Correct 153 ms 29596 KB Output is correct
19 Correct 73 ms 26264 KB Output is correct
20 Correct 93 ms 25820 KB Output is correct
21 Correct 137 ms 28716 KB Output is correct
22 Correct 61 ms 18128 KB Output is correct
23 Correct 78 ms 25928 KB Output is correct
24 Correct 157 ms 30664 KB Output is correct
25 Correct 62 ms 26564 KB Output is correct
26 Correct 64 ms 26304 KB Output is correct
27 Correct 129 ms 28212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8576 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8524 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 5 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 7 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8280 KB Output is correct
19 Correct 3 ms 8540 KB Output is correct
20 Correct 4 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8496 KB Output is correct
28 Correct 4 ms 8536 KB Output is correct
29 Correct 59 ms 26048 KB Output is correct
30 Correct 61 ms 25788 KB Output is correct
31 Correct 64 ms 25776 KB Output is correct
32 Correct 61 ms 25952 KB Output is correct
33 Correct 55 ms 17588 KB Output is correct
34 Correct 53 ms 17336 KB Output is correct
35 Correct 62 ms 25524 KB Output is correct
36 Correct 56 ms 25524 KB Output is correct
37 Correct 14 ms 6492 KB Output is correct
38 Correct 61 ms 23736 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 30 ms 9684 KB Output is correct
41 Correct 62 ms 25524 KB Output is correct
42 Correct 77 ms 25948 KB Output is correct
43 Correct 14 ms 8644 KB Output is correct
44 Correct 61 ms 25532 KB Output is correct
45 Correct 63 ms 25788 KB Output is correct
46 Correct 21 ms 9176 KB Output is correct
47 Correct 61 ms 25820 KB Output is correct
48 Correct 64 ms 26288 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 58 ms 16836 KB Output is correct
51 Correct 57 ms 25268 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 13 ms 8536 KB Output is correct
54 Correct 51 ms 18876 KB Output is correct
55 Correct 49 ms 18872 KB Output is correct
56 Correct 135 ms 31972 KB Output is correct
57 Correct 138 ms 30104 KB Output is correct
58 Correct 136 ms 30568 KB Output is correct
59 Correct 120 ms 29236 KB Output is correct
60 Correct 134 ms 24276 KB Output is correct
61 Correct 126 ms 30776 KB Output is correct
62 Correct 119 ms 28028 KB Output is correct
63 Correct 106 ms 26692 KB Output is correct
64 Correct 64 ms 10988 KB Output is correct
65 Correct 137 ms 30204 KB Output is correct
66 Correct 66 ms 11328 KB Output is correct
67 Correct 57 ms 12232 KB Output is correct
68 Correct 74 ms 26288 KB Output is correct
69 Correct 133 ms 30588 KB Output is correct
70 Correct 15 ms 9052 KB Output is correct
71 Correct 92 ms 26448 KB Output is correct
72 Correct 121 ms 29272 KB Output is correct
73 Correct 13 ms 8796 KB Output is correct
74 Correct 67 ms 18868 KB Output is correct
75 Correct 145 ms 32396 KB Output is correct
76 Correct 14 ms 8540 KB Output is correct
77 Correct 58 ms 17340 KB Output is correct
78 Correct 111 ms 26888 KB Output is correct
79 Correct 40 ms 10700 KB Output is correct
80 Correct 36 ms 9688 KB Output is correct
81 Correct 15 ms 8792 KB Output is correct
82 Correct 17 ms 9048 KB Output is correct
83 Correct 178 ms 30528 KB Output is correct
84 Correct 153 ms 29328 KB Output is correct
85 Correct 165 ms 30244 KB Output is correct
86 Correct 140 ms 28716 KB Output is correct
87 Correct 150 ms 30768 KB Output is correct
88 Correct 167 ms 29272 KB Output is correct
89 Correct 143 ms 27700 KB Output is correct
90 Correct 119 ms 28600 KB Output is correct
91 Correct 122 ms 12540 KB Output is correct
92 Correct 146 ms 29492 KB Output is correct
93 Correct 175 ms 29492 KB Output is correct
94 Correct 65 ms 17916 KB Output is correct
95 Correct 74 ms 26036 KB Output is correct
96 Correct 153 ms 29596 KB Output is correct
97 Correct 73 ms 26264 KB Output is correct
98 Correct 93 ms 25820 KB Output is correct
99 Correct 137 ms 28716 KB Output is correct
100 Correct 61 ms 18128 KB Output is correct
101 Correct 78 ms 25928 KB Output is correct
102 Correct 157 ms 30664 KB Output is correct
103 Correct 62 ms 26564 KB Output is correct
104 Correct 64 ms 26304 KB Output is correct
105 Correct 129 ms 28212 KB Output is correct
106 Correct 36 ms 9180 KB Output is correct
107 Correct 42 ms 11016 KB Output is correct
108 Correct 39 ms 9680 KB Output is correct
109 Correct 42 ms 10692 KB Output is correct
110 Correct 166 ms 31552 KB Output is correct
111 Correct 161 ms 30760 KB Output is correct
112 Correct 159 ms 30516 KB Output is correct
113 Correct 171 ms 29572 KB Output is correct
114 Correct 158 ms 31932 KB Output is correct
115 Correct 151 ms 30264 KB Output is correct
116 Correct 176 ms 46076 KB Output is correct
117 Correct 136 ms 28488 KB Output is correct
118 Correct 114 ms 13520 KB Output is correct
119 Correct 52 ms 11344 KB Output is correct
120 Correct 208 ms 30004 KB Output is correct
121 Correct 70 ms 26304 KB Output is correct
122 Correct 78 ms 26480 KB Output is correct
123 Correct 169 ms 30576 KB Output is correct
124 Correct 66 ms 18360 KB Output is correct
125 Correct 105 ms 26076 KB Output is correct
126 Correct 155 ms 29996 KB Output is correct
127 Correct 64 ms 17644 KB Output is correct
128 Correct 74 ms 26556 KB Output is correct
129 Correct 158 ms 32304 KB Output is correct
130 Correct 73 ms 26296 KB Output is correct
131 Correct 77 ms 26304 KB Output is correct
132 Correct 141 ms 28508 KB Output is correct