Submission #987970

# Submission time Handle Problem Language Result Execution time Memory
987970 2024-05-23T19:51:29 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
202 ms 48544 KB
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:7:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    7 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:7:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    7 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:7:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    7 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:7:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    7 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:7:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    7 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 5880 KB Output is correct
2 Correct 6 ms 5592 KB Output is correct
3 Correct 6 ms 5724 KB Output is correct
4 Correct 5 ms 5720 KB Output is correct
5 Correct 5 ms 5720 KB Output is correct
6 Correct 5 ms 5724 KB Output is correct
7 Correct 6 ms 5596 KB Output is correct
8 Correct 4 ms 5592 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 6 ms 5724 KB Output is correct
11 Correct 4 ms 5168 KB Output is correct
12 Correct 4 ms 5208 KB Output is correct
13 Correct 4 ms 5464 KB Output is correct
14 Correct 6 ms 5720 KB Output is correct
15 Correct 4 ms 5212 KB Output is correct
16 Correct 4 ms 5464 KB Output is correct
17 Correct 6 ms 5848 KB Output is correct
18 Correct 4 ms 5212 KB Output is correct
19 Correct 4 ms 5468 KB Output is correct
20 Correct 6 ms 5724 KB Output is correct
21 Correct 3 ms 5212 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 5 ms 5592 KB Output is correct
24 Correct 4 ms 5208 KB Output is correct
25 Correct 5 ms 5212 KB Output is correct
26 Correct 5 ms 5724 KB Output is correct
27 Correct 6 ms 5592 KB Output is correct
28 Correct 5 ms 5468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 23192 KB Output is correct
2 Correct 64 ms 22960 KB Output is correct
3 Correct 64 ms 22868 KB Output is correct
4 Correct 65 ms 22964 KB Output is correct
5 Correct 55 ms 14760 KB Output is correct
6 Correct 55 ms 14504 KB Output is correct
7 Correct 67 ms 22704 KB Output is correct
8 Correct 60 ms 22444 KB Output is correct
9 Correct 15 ms 5724 KB Output is correct
10 Correct 65 ms 22860 KB Output is correct
11 Correct 13 ms 5720 KB Output is correct
12 Correct 31 ms 6652 KB Output is correct
13 Correct 68 ms 22700 KB Output is correct
14 Correct 64 ms 22956 KB Output is correct
15 Correct 15 ms 5976 KB Output is correct
16 Correct 64 ms 22580 KB Output is correct
17 Correct 65 ms 22956 KB Output is correct
18 Correct 22 ms 6360 KB Output is correct
19 Correct 65 ms 22964 KB Output is correct
20 Correct 62 ms 23420 KB Output is correct
21 Correct 16 ms 5940 KB Output is correct
22 Correct 60 ms 13972 KB Output is correct
23 Correct 61 ms 22192 KB Output is correct
24 Correct 13 ms 5724 KB Output is correct
25 Correct 13 ms 5724 KB Output is correct
26 Correct 53 ms 14640 KB Output is correct
27 Correct 63 ms 14532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 5880 KB Output is correct
2 Correct 6 ms 5592 KB Output is correct
3 Correct 6 ms 5724 KB Output is correct
4 Correct 5 ms 5720 KB Output is correct
5 Correct 5 ms 5720 KB Output is correct
6 Correct 5 ms 5724 KB Output is correct
7 Correct 6 ms 5596 KB Output is correct
8 Correct 4 ms 5592 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 6 ms 5724 KB Output is correct
11 Correct 4 ms 5168 KB Output is correct
12 Correct 4 ms 5208 KB Output is correct
13 Correct 4 ms 5464 KB Output is correct
14 Correct 6 ms 5720 KB Output is correct
15 Correct 4 ms 5212 KB Output is correct
16 Correct 4 ms 5464 KB Output is correct
17 Correct 6 ms 5848 KB Output is correct
18 Correct 4 ms 5212 KB Output is correct
19 Correct 4 ms 5468 KB Output is correct
20 Correct 6 ms 5724 KB Output is correct
21 Correct 3 ms 5212 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 5 ms 5592 KB Output is correct
24 Correct 4 ms 5208 KB Output is correct
25 Correct 5 ms 5212 KB Output is correct
26 Correct 5 ms 5724 KB Output is correct
27 Correct 6 ms 5592 KB Output is correct
28 Correct 5 ms 5468 KB Output is correct
29 Correct 60 ms 23192 KB Output is correct
30 Correct 64 ms 22960 KB Output is correct
31 Correct 64 ms 22868 KB Output is correct
32 Correct 65 ms 22964 KB Output is correct
33 Correct 55 ms 14760 KB Output is correct
34 Correct 55 ms 14504 KB Output is correct
35 Correct 67 ms 22704 KB Output is correct
36 Correct 60 ms 22444 KB Output is correct
37 Correct 15 ms 5724 KB Output is correct
38 Correct 65 ms 22860 KB Output is correct
39 Correct 13 ms 5720 KB Output is correct
40 Correct 31 ms 6652 KB Output is correct
41 Correct 68 ms 22700 KB Output is correct
42 Correct 64 ms 22956 KB Output is correct
43 Correct 15 ms 5976 KB Output is correct
44 Correct 64 ms 22580 KB Output is correct
45 Correct 65 ms 22956 KB Output is correct
46 Correct 22 ms 6360 KB Output is correct
47 Correct 65 ms 22964 KB Output is correct
48 Correct 62 ms 23420 KB Output is correct
49 Correct 16 ms 5940 KB Output is correct
50 Correct 60 ms 13972 KB Output is correct
51 Correct 61 ms 22192 KB Output is correct
52 Correct 13 ms 5724 KB Output is correct
53 Correct 13 ms 5724 KB Output is correct
54 Correct 53 ms 14640 KB Output is correct
55 Correct 63 ms 14532 KB Output is correct
56 Correct 164 ms 33292 KB Output is correct
57 Correct 138 ms 30180 KB Output is correct
58 Correct 140 ms 31288 KB Output is correct
59 Correct 134 ms 28684 KB Output is correct
60 Correct 147 ms 25176 KB Output is correct
61 Correct 132 ms 31100 KB Output is correct
62 Correct 124 ms 27352 KB Output is correct
63 Correct 106 ms 25164 KB Output is correct
64 Correct 58 ms 9420 KB Output is correct
65 Correct 145 ms 30524 KB Output is correct
66 Correct 50 ms 10324 KB Output is correct
67 Correct 49 ms 9160 KB Output is correct
68 Correct 77 ms 23556 KB Output is correct
69 Correct 159 ms 30948 KB Output is correct
70 Correct 16 ms 5976 KB Output is correct
71 Correct 78 ms 23428 KB Output is correct
72 Correct 126 ms 28424 KB Output is correct
73 Correct 15 ms 5720 KB Output is correct
74 Correct 64 ms 15696 KB Output is correct
75 Correct 142 ms 33324 KB Output is correct
76 Correct 18 ms 5724 KB Output is correct
77 Correct 65 ms 14636 KB Output is correct
78 Correct 109 ms 25528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 7640 KB Output is correct
2 Correct 38 ms 6516 KB Output is correct
3 Correct 15 ms 5724 KB Output is correct
4 Correct 17 ms 5980 KB Output is correct
5 Correct 202 ms 33008 KB Output is correct
6 Correct 181 ms 31792 KB Output is correct
7 Correct 170 ms 32220 KB Output is correct
8 Correct 143 ms 31228 KB Output is correct
9 Correct 151 ms 33124 KB Output is correct
10 Correct 175 ms 31420 KB Output is correct
11 Correct 144 ms 30196 KB Output is correct
12 Correct 130 ms 30228 KB Output is correct
13 Correct 103 ms 13904 KB Output is correct
14 Correct 149 ms 31784 KB Output is correct
15 Correct 159 ms 31624 KB Output is correct
16 Correct 67 ms 15024 KB Output is correct
17 Correct 73 ms 22956 KB Output is correct
18 Correct 161 ms 32008 KB Output is correct
19 Correct 70 ms 23320 KB Output is correct
20 Correct 78 ms 22964 KB Output is correct
21 Correct 143 ms 31076 KB Output is correct
22 Correct 65 ms 14732 KB Output is correct
23 Correct 75 ms 23156 KB Output is correct
24 Correct 156 ms 33068 KB Output is correct
25 Correct 64 ms 23476 KB Output is correct
26 Correct 61 ms 23472 KB Output is correct
27 Correct 129 ms 29772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 5880 KB Output is correct
2 Correct 6 ms 5592 KB Output is correct
3 Correct 6 ms 5724 KB Output is correct
4 Correct 5 ms 5720 KB Output is correct
5 Correct 5 ms 5720 KB Output is correct
6 Correct 5 ms 5724 KB Output is correct
7 Correct 6 ms 5596 KB Output is correct
8 Correct 4 ms 5592 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 6 ms 5724 KB Output is correct
11 Correct 4 ms 5168 KB Output is correct
12 Correct 4 ms 5208 KB Output is correct
13 Correct 4 ms 5464 KB Output is correct
14 Correct 6 ms 5720 KB Output is correct
15 Correct 4 ms 5212 KB Output is correct
16 Correct 4 ms 5464 KB Output is correct
17 Correct 6 ms 5848 KB Output is correct
18 Correct 4 ms 5212 KB Output is correct
19 Correct 4 ms 5468 KB Output is correct
20 Correct 6 ms 5724 KB Output is correct
21 Correct 3 ms 5212 KB Output is correct
22 Correct 4 ms 5468 KB Output is correct
23 Correct 5 ms 5592 KB Output is correct
24 Correct 4 ms 5208 KB Output is correct
25 Correct 5 ms 5212 KB Output is correct
26 Correct 5 ms 5724 KB Output is correct
27 Correct 6 ms 5592 KB Output is correct
28 Correct 5 ms 5468 KB Output is correct
29 Correct 60 ms 23192 KB Output is correct
30 Correct 64 ms 22960 KB Output is correct
31 Correct 64 ms 22868 KB Output is correct
32 Correct 65 ms 22964 KB Output is correct
33 Correct 55 ms 14760 KB Output is correct
34 Correct 55 ms 14504 KB Output is correct
35 Correct 67 ms 22704 KB Output is correct
36 Correct 60 ms 22444 KB Output is correct
37 Correct 15 ms 5724 KB Output is correct
38 Correct 65 ms 22860 KB Output is correct
39 Correct 13 ms 5720 KB Output is correct
40 Correct 31 ms 6652 KB Output is correct
41 Correct 68 ms 22700 KB Output is correct
42 Correct 64 ms 22956 KB Output is correct
43 Correct 15 ms 5976 KB Output is correct
44 Correct 64 ms 22580 KB Output is correct
45 Correct 65 ms 22956 KB Output is correct
46 Correct 22 ms 6360 KB Output is correct
47 Correct 65 ms 22964 KB Output is correct
48 Correct 62 ms 23420 KB Output is correct
49 Correct 16 ms 5940 KB Output is correct
50 Correct 60 ms 13972 KB Output is correct
51 Correct 61 ms 22192 KB Output is correct
52 Correct 13 ms 5724 KB Output is correct
53 Correct 13 ms 5724 KB Output is correct
54 Correct 53 ms 14640 KB Output is correct
55 Correct 63 ms 14532 KB Output is correct
56 Correct 164 ms 33292 KB Output is correct
57 Correct 138 ms 30180 KB Output is correct
58 Correct 140 ms 31288 KB Output is correct
59 Correct 134 ms 28684 KB Output is correct
60 Correct 147 ms 25176 KB Output is correct
61 Correct 132 ms 31100 KB Output is correct
62 Correct 124 ms 27352 KB Output is correct
63 Correct 106 ms 25164 KB Output is correct
64 Correct 58 ms 9420 KB Output is correct
65 Correct 145 ms 30524 KB Output is correct
66 Correct 50 ms 10324 KB Output is correct
67 Correct 49 ms 9160 KB Output is correct
68 Correct 77 ms 23556 KB Output is correct
69 Correct 159 ms 30948 KB Output is correct
70 Correct 16 ms 5976 KB Output is correct
71 Correct 78 ms 23428 KB Output is correct
72 Correct 126 ms 28424 KB Output is correct
73 Correct 15 ms 5720 KB Output is correct
74 Correct 64 ms 15696 KB Output is correct
75 Correct 142 ms 33324 KB Output is correct
76 Correct 18 ms 5724 KB Output is correct
77 Correct 65 ms 14636 KB Output is correct
78 Correct 109 ms 25528 KB Output is correct
79 Correct 42 ms 7640 KB Output is correct
80 Correct 38 ms 6516 KB Output is correct
81 Correct 15 ms 5724 KB Output is correct
82 Correct 17 ms 5980 KB Output is correct
83 Correct 202 ms 33008 KB Output is correct
84 Correct 181 ms 31792 KB Output is correct
85 Correct 170 ms 32220 KB Output is correct
86 Correct 143 ms 31228 KB Output is correct
87 Correct 151 ms 33124 KB Output is correct
88 Correct 175 ms 31420 KB Output is correct
89 Correct 144 ms 30196 KB Output is correct
90 Correct 130 ms 30228 KB Output is correct
91 Correct 103 ms 13904 KB Output is correct
92 Correct 149 ms 31784 KB Output is correct
93 Correct 159 ms 31624 KB Output is correct
94 Correct 67 ms 15024 KB Output is correct
95 Correct 73 ms 22956 KB Output is correct
96 Correct 161 ms 32008 KB Output is correct
97 Correct 70 ms 23320 KB Output is correct
98 Correct 78 ms 22964 KB Output is correct
99 Correct 143 ms 31076 KB Output is correct
100 Correct 65 ms 14732 KB Output is correct
101 Correct 75 ms 23156 KB Output is correct
102 Correct 156 ms 33068 KB Output is correct
103 Correct 64 ms 23476 KB Output is correct
104 Correct 61 ms 23472 KB Output is correct
105 Correct 129 ms 29772 KB Output is correct
106 Correct 39 ms 6364 KB Output is correct
107 Correct 42 ms 7884 KB Output is correct
108 Correct 40 ms 6916 KB Output is correct
109 Correct 42 ms 7884 KB Output is correct
110 Correct 194 ms 33896 KB Output is correct
111 Correct 176 ms 32956 KB Output is correct
112 Correct 165 ms 32824 KB Output is correct
113 Correct 168 ms 31852 KB Output is correct
114 Correct 168 ms 34048 KB Output is correct
115 Correct 158 ms 32644 KB Output is correct
116 Correct 171 ms 48544 KB Output is correct
117 Correct 143 ms 29984 KB Output is correct
118 Correct 114 ms 15920 KB Output is correct
119 Correct 60 ms 10628 KB Output is correct
120 Correct 164 ms 32248 KB Output is correct
121 Correct 72 ms 23472 KB Output is correct
122 Correct 78 ms 23484 KB Output is correct
123 Correct 168 ms 32932 KB Output is correct
124 Correct 66 ms 15536 KB Output is correct
125 Correct 87 ms 23212 KB Output is correct
126 Correct 156 ms 32372 KB Output is correct
127 Correct 66 ms 14536 KB Output is correct
128 Correct 74 ms 23724 KB Output is correct
129 Correct 173 ms 34616 KB Output is correct
130 Correct 80 ms 23376 KB Output is correct
131 Correct 80 ms 23216 KB Output is correct
132 Correct 143 ms 29940 KB Output is correct