Submission #987961

# Submission time Handle Problem Language Result Execution time Memory
987961 2024-05-23T19:45:02 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
193 ms 46392 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 7 ms 8540 KB Output is correct
5 Correct 5 ms 6492 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 7 ms 8416 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 4 ms 8540 KB Output is correct
11 Correct 4 ms 8384 KB Output is correct
12 Correct 5 ms 7256 KB Output is correct
13 Correct 5 ms 8540 KB Output is correct
14 Correct 6 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 5 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 4 ms 8536 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 65 ms 26036 KB Output is correct
2 Correct 60 ms 26668 KB Output is correct
3 Correct 69 ms 27432 KB Output is correct
4 Correct 63 ms 25976 KB Output is correct
5 Correct 69 ms 15540 KB Output is correct
6 Correct 66 ms 17712 KB Output is correct
7 Correct 62 ms 25660 KB Output is correct
8 Correct 59 ms 26004 KB Output is correct
9 Correct 22 ms 6596 KB Output is correct
10 Correct 65 ms 27832 KB Output is correct
11 Correct 20 ms 8536 KB Output is correct
12 Correct 29 ms 9684 KB Output is correct
13 Correct 75 ms 25096 KB Output is correct
14 Correct 66 ms 27264 KB Output is correct
15 Correct 15 ms 8796 KB Output is correct
16 Correct 60 ms 25524 KB Output is correct
17 Correct 63 ms 24356 KB Output is correct
18 Correct 29 ms 6360 KB Output is correct
19 Correct 84 ms 26000 KB Output is correct
20 Correct 69 ms 24132 KB Output is correct
21 Correct 13 ms 8796 KB Output is correct
22 Correct 57 ms 16964 KB Output is correct
23 Correct 65 ms 26988 KB Output is correct
24 Correct 15 ms 6500 KB Output is correct
25 Correct 15 ms 8540 KB Output is correct
26 Correct 51 ms 15980 KB Output is correct
27 Correct 52 ms 17532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 7 ms 8540 KB Output is correct
5 Correct 5 ms 6492 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 7 ms 8416 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 4 ms 8540 KB Output is correct
11 Correct 4 ms 8384 KB Output is correct
12 Correct 5 ms 7256 KB Output is correct
13 Correct 5 ms 8540 KB Output is correct
14 Correct 6 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 5 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 4 ms 8536 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 65 ms 26036 KB Output is correct
30 Correct 60 ms 26668 KB Output is correct
31 Correct 69 ms 27432 KB Output is correct
32 Correct 63 ms 25976 KB Output is correct
33 Correct 69 ms 15540 KB Output is correct
34 Correct 66 ms 17712 KB Output is correct
35 Correct 62 ms 25660 KB Output is correct
36 Correct 59 ms 26004 KB Output is correct
37 Correct 22 ms 6596 KB Output is correct
38 Correct 65 ms 27832 KB Output is correct
39 Correct 20 ms 8536 KB Output is correct
40 Correct 29 ms 9684 KB Output is correct
41 Correct 75 ms 25096 KB Output is correct
42 Correct 66 ms 27264 KB Output is correct
43 Correct 15 ms 8796 KB Output is correct
44 Correct 60 ms 25524 KB Output is correct
45 Correct 63 ms 24356 KB Output is correct
46 Correct 29 ms 6360 KB Output is correct
47 Correct 84 ms 26000 KB Output is correct
48 Correct 69 ms 24132 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 57 ms 16964 KB Output is correct
51 Correct 65 ms 26988 KB Output is correct
52 Correct 15 ms 6500 KB Output is correct
53 Correct 15 ms 8540 KB Output is correct
54 Correct 51 ms 15980 KB Output is correct
55 Correct 52 ms 17532 KB Output is correct
56 Correct 159 ms 31952 KB Output is correct
57 Correct 139 ms 31536 KB Output is correct
58 Correct 149 ms 32516 KB Output is correct
59 Correct 124 ms 28728 KB Output is correct
60 Correct 190 ms 23608 KB Output is correct
61 Correct 150 ms 32408 KB Output is correct
62 Correct 123 ms 29204 KB Output is correct
63 Correct 109 ms 27008 KB Output is correct
64 Correct 56 ms 10828 KB Output is correct
65 Correct 145 ms 32168 KB Output is correct
66 Correct 74 ms 11484 KB Output is correct
67 Correct 49 ms 12240 KB Output is correct
68 Correct 86 ms 27076 KB Output is correct
69 Correct 181 ms 30516 KB Output is correct
70 Correct 17 ms 9048 KB Output is correct
71 Correct 81 ms 26812 KB Output is correct
72 Correct 122 ms 30736 KB Output is correct
73 Correct 12 ms 8796 KB Output is correct
74 Correct 66 ms 18820 KB Output is correct
75 Correct 150 ms 32332 KB Output is correct
76 Correct 23 ms 8540 KB Output is correct
77 Correct 59 ms 17856 KB Output is correct
78 Correct 104 ms 26836 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 10712 KB Output is correct
2 Correct 39 ms 9404 KB Output is correct
3 Correct 22 ms 8796 KB Output is correct
4 Correct 16 ms 8796 KB Output is correct
5 Correct 146 ms 31528 KB Output is correct
6 Correct 156 ms 29288 KB Output is correct
7 Correct 153 ms 31044 KB Output is correct
8 Correct 140 ms 29268 KB Output is correct
9 Correct 170 ms 32308 KB Output is correct
10 Correct 179 ms 29740 KB Output is correct
11 Correct 169 ms 29240 KB Output is correct
12 Correct 133 ms 30140 KB Output is correct
13 Correct 107 ms 12332 KB Output is correct
14 Correct 149 ms 31292 KB Output is correct
15 Correct 153 ms 29248 KB Output is correct
16 Correct 61 ms 17848 KB Output is correct
17 Correct 71 ms 25988 KB Output is correct
18 Correct 167 ms 30768 KB Output is correct
19 Correct 73 ms 27324 KB Output is correct
20 Correct 74 ms 25780 KB Output is correct
21 Correct 142 ms 30464 KB Output is correct
22 Correct 58 ms 18624 KB Output is correct
23 Correct 72 ms 26036 KB Output is correct
24 Correct 148 ms 32056 KB Output is correct
25 Correct 62 ms 28092 KB Output is correct
26 Correct 70 ms 27060 KB Output is correct
27 Correct 122 ms 28264 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 7 ms 8540 KB Output is correct
5 Correct 5 ms 6492 KB Output is correct
6 Correct 5 ms 8536 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 7 ms 8416 KB Output is correct
9 Correct 4 ms 5212 KB Output is correct
10 Correct 4 ms 8540 KB Output is correct
11 Correct 4 ms 8384 KB Output is correct
12 Correct 5 ms 7256 KB Output is correct
13 Correct 5 ms 8540 KB Output is correct
14 Correct 6 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 5 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 4 ms 8540 KB Output is correct
23 Correct 4 ms 8536 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 65 ms 26036 KB Output is correct
30 Correct 60 ms 26668 KB Output is correct
31 Correct 69 ms 27432 KB Output is correct
32 Correct 63 ms 25976 KB Output is correct
33 Correct 69 ms 15540 KB Output is correct
34 Correct 66 ms 17712 KB Output is correct
35 Correct 62 ms 25660 KB Output is correct
36 Correct 59 ms 26004 KB Output is correct
37 Correct 22 ms 6596 KB Output is correct
38 Correct 65 ms 27832 KB Output is correct
39 Correct 20 ms 8536 KB Output is correct
40 Correct 29 ms 9684 KB Output is correct
41 Correct 75 ms 25096 KB Output is correct
42 Correct 66 ms 27264 KB Output is correct
43 Correct 15 ms 8796 KB Output is correct
44 Correct 60 ms 25524 KB Output is correct
45 Correct 63 ms 24356 KB Output is correct
46 Correct 29 ms 6360 KB Output is correct
47 Correct 84 ms 26000 KB Output is correct
48 Correct 69 ms 24132 KB Output is correct
49 Correct 13 ms 8796 KB Output is correct
50 Correct 57 ms 16964 KB Output is correct
51 Correct 65 ms 26988 KB Output is correct
52 Correct 15 ms 6500 KB Output is correct
53 Correct 15 ms 8540 KB Output is correct
54 Correct 51 ms 15980 KB Output is correct
55 Correct 52 ms 17532 KB Output is correct
56 Correct 159 ms 31952 KB Output is correct
57 Correct 139 ms 31536 KB Output is correct
58 Correct 149 ms 32516 KB Output is correct
59 Correct 124 ms 28728 KB Output is correct
60 Correct 190 ms 23608 KB Output is correct
61 Correct 150 ms 32408 KB Output is correct
62 Correct 123 ms 29204 KB Output is correct
63 Correct 109 ms 27008 KB Output is correct
64 Correct 56 ms 10828 KB Output is correct
65 Correct 145 ms 32168 KB Output is correct
66 Correct 74 ms 11484 KB Output is correct
67 Correct 49 ms 12240 KB Output is correct
68 Correct 86 ms 27076 KB Output is correct
69 Correct 181 ms 30516 KB Output is correct
70 Correct 17 ms 9048 KB Output is correct
71 Correct 81 ms 26812 KB Output is correct
72 Correct 122 ms 30736 KB Output is correct
73 Correct 12 ms 8796 KB Output is correct
74 Correct 66 ms 18820 KB Output is correct
75 Correct 150 ms 32332 KB Output is correct
76 Correct 23 ms 8540 KB Output is correct
77 Correct 59 ms 17856 KB Output is correct
78 Correct 104 ms 26836 KB Output is correct
79 Correct 41 ms 10712 KB Output is correct
80 Correct 39 ms 9404 KB Output is correct
81 Correct 22 ms 8796 KB Output is correct
82 Correct 16 ms 8796 KB Output is correct
83 Correct 146 ms 31528 KB Output is correct
84 Correct 156 ms 29288 KB Output is correct
85 Correct 153 ms 31044 KB Output is correct
86 Correct 140 ms 29268 KB Output is correct
87 Correct 170 ms 32308 KB Output is correct
88 Correct 179 ms 29740 KB Output is correct
89 Correct 169 ms 29240 KB Output is correct
90 Correct 133 ms 30140 KB Output is correct
91 Correct 107 ms 12332 KB Output is correct
92 Correct 149 ms 31292 KB Output is correct
93 Correct 153 ms 29248 KB Output is correct
94 Correct 61 ms 17848 KB Output is correct
95 Correct 71 ms 25988 KB Output is correct
96 Correct 167 ms 30768 KB Output is correct
97 Correct 73 ms 27324 KB Output is correct
98 Correct 74 ms 25780 KB Output is correct
99 Correct 142 ms 30464 KB Output is correct
100 Correct 58 ms 18624 KB Output is correct
101 Correct 72 ms 26036 KB Output is correct
102 Correct 148 ms 32056 KB Output is correct
103 Correct 62 ms 28092 KB Output is correct
104 Correct 70 ms 27060 KB Output is correct
105 Correct 122 ms 28264 KB Output is correct
106 Correct 40 ms 9272 KB Output is correct
107 Correct 42 ms 10956 KB Output is correct
108 Correct 40 ms 9680 KB Output is correct
109 Correct 41 ms 10616 KB Output is correct
110 Correct 150 ms 33252 KB Output is correct
111 Correct 153 ms 30736 KB Output is correct
112 Correct 164 ms 31804 KB Output is correct
113 Correct 152 ms 29912 KB Output is correct
114 Correct 184 ms 33356 KB Output is correct
115 Correct 176 ms 31280 KB Output is correct
116 Correct 158 ms 46392 KB Output is correct
117 Correct 138 ms 28992 KB Output is correct
118 Correct 116 ms 14340 KB Output is correct
119 Correct 76 ms 11348 KB Output is correct
120 Correct 193 ms 30004 KB Output is correct
121 Correct 87 ms 24300 KB Output is correct
122 Correct 76 ms 24200 KB Output is correct
123 Correct 180 ms 30880 KB Output is correct
124 Correct 79 ms 19664 KB Output is correct
125 Correct 91 ms 26232 KB Output is correct
126 Correct 170 ms 30200 KB Output is correct
127 Correct 69 ms 17604 KB Output is correct
128 Correct 71 ms 28104 KB Output is correct
129 Correct 180 ms 33580 KB Output is correct
130 Correct 89 ms 26340 KB Output is correct
131 Correct 89 ms 27504 KB Output is correct
132 Correct 144 ms 28992 KB Output is correct