Submission #987959

# Submission time Handle Problem Language Result Execution time Memory
987959 2024-05-23T19:44:51 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
219 ms 46260 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6488 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 6 ms 6492 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 6 ms 8536 KB Output is correct
8 Correct 6 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 5 ms 8028 KB Output is correct
12 Correct 5 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8556 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 5 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 6208 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 8692 KB Output is correct
23 Correct 6 ms 6436 KB Output is correct
24 Correct 5 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 6 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 70 ms 27412 KB Output is correct
2 Correct 62 ms 25772 KB Output is correct
3 Correct 61 ms 26284 KB Output is correct
4 Correct 67 ms 27056 KB Output is correct
5 Correct 57 ms 15532 KB Output is correct
6 Correct 64 ms 18056 KB Output is correct
7 Correct 62 ms 26544 KB Output is correct
8 Correct 59 ms 22508 KB Output is correct
9 Correct 12 ms 8540 KB Output is correct
10 Correct 69 ms 25876 KB Output is correct
11 Correct 14 ms 8540 KB Output is correct
12 Correct 34 ms 7660 KB Output is correct
13 Correct 91 ms 27448 KB Output is correct
14 Correct 87 ms 25872 KB Output is correct
15 Correct 13 ms 8652 KB Output is correct
16 Correct 65 ms 26800 KB Output is correct
17 Correct 65 ms 25796 KB Output is correct
18 Correct 20 ms 9180 KB Output is correct
19 Correct 70 ms 25844 KB Output is correct
20 Correct 82 ms 26424 KB Output is correct
21 Correct 13 ms 8792 KB Output is correct
22 Correct 63 ms 17816 KB Output is correct
23 Correct 57 ms 25660 KB Output is correct
24 Correct 14 ms 5724 KB Output is correct
25 Correct 21 ms 6492 KB Output is correct
26 Correct 56 ms 15548 KB Output is correct
27 Correct 64 ms 14528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6488 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 6 ms 6492 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 6 ms 8536 KB Output is correct
8 Correct 6 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 5 ms 8028 KB Output is correct
12 Correct 5 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8556 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 5 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 6208 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 8692 KB Output is correct
23 Correct 6 ms 6436 KB Output is correct
24 Correct 5 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 6 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 70 ms 27412 KB Output is correct
30 Correct 62 ms 25772 KB Output is correct
31 Correct 61 ms 26284 KB Output is correct
32 Correct 67 ms 27056 KB Output is correct
33 Correct 57 ms 15532 KB Output is correct
34 Correct 64 ms 18056 KB Output is correct
35 Correct 62 ms 26544 KB Output is correct
36 Correct 59 ms 22508 KB Output is correct
37 Correct 12 ms 8540 KB Output is correct
38 Correct 69 ms 25876 KB Output is correct
39 Correct 14 ms 8540 KB Output is correct
40 Correct 34 ms 7660 KB Output is correct
41 Correct 91 ms 27448 KB Output is correct
42 Correct 87 ms 25872 KB Output is correct
43 Correct 13 ms 8652 KB Output is correct
44 Correct 65 ms 26800 KB Output is correct
45 Correct 65 ms 25796 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 70 ms 25844 KB Output is correct
48 Correct 82 ms 26424 KB Output is correct
49 Correct 13 ms 8792 KB Output is correct
50 Correct 63 ms 17816 KB Output is correct
51 Correct 57 ms 25660 KB Output is correct
52 Correct 14 ms 5724 KB Output is correct
53 Correct 21 ms 6492 KB Output is correct
54 Correct 56 ms 15548 KB Output is correct
55 Correct 64 ms 14528 KB Output is correct
56 Correct 157 ms 31404 KB Output is correct
57 Correct 157 ms 29880 KB Output is correct
58 Correct 134 ms 31948 KB Output is correct
59 Correct 140 ms 30408 KB Output is correct
60 Correct 150 ms 24264 KB Output is correct
61 Correct 147 ms 31616 KB Output is correct
62 Correct 149 ms 29384 KB Output is correct
63 Correct 116 ms 27892 KB Output is correct
64 Correct 60 ms 10868 KB Output is correct
65 Correct 153 ms 31468 KB Output is correct
66 Correct 59 ms 11408 KB Output is correct
67 Correct 53 ms 12024 KB Output is correct
68 Correct 83 ms 26508 KB Output is correct
69 Correct 146 ms 30548 KB Output is correct
70 Correct 22 ms 8920 KB Output is correct
71 Correct 82 ms 25516 KB Output is correct
72 Correct 146 ms 29276 KB Output is correct
73 Correct 12 ms 8796 KB Output is correct
74 Correct 74 ms 18648 KB Output is correct
75 Correct 168 ms 32400 KB Output is correct
76 Correct 12 ms 8584 KB Output is correct
77 Correct 66 ms 18736 KB Output is correct
78 Correct 117 ms 26800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 49 ms 10712 KB Output is correct
2 Correct 36 ms 9552 KB Output is correct
3 Correct 17 ms 8796 KB Output is correct
4 Correct 17 ms 8796 KB Output is correct
5 Correct 181 ms 30736 KB Output is correct
6 Correct 166 ms 29972 KB Output is correct
7 Correct 187 ms 30860 KB Output is correct
8 Correct 144 ms 29004 KB Output is correct
9 Correct 188 ms 31452 KB Output is correct
10 Correct 172 ms 29068 KB Output is correct
11 Correct 147 ms 27696 KB Output is correct
12 Correct 124 ms 28076 KB Output is correct
13 Correct 101 ms 11512 KB Output is correct
14 Correct 174 ms 31172 KB Output is correct
15 Correct 173 ms 30048 KB Output is correct
16 Correct 75 ms 17848 KB Output is correct
17 Correct 84 ms 24692 KB Output is correct
18 Correct 196 ms 29700 KB Output is correct
19 Correct 86 ms 27080 KB Output is correct
20 Correct 82 ms 27120 KB Output is correct
21 Correct 163 ms 29752 KB Output is correct
22 Correct 80 ms 17668 KB Output is correct
23 Correct 75 ms 27856 KB Output is correct
24 Correct 205 ms 30700 KB Output is correct
25 Correct 68 ms 28496 KB Output is correct
26 Correct 78 ms 26768 KB Output is correct
27 Correct 132 ms 28304 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 6488 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 6 ms 6492 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 6 ms 8536 KB Output is correct
8 Correct 6 ms 8540 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 5 ms 8028 KB Output is correct
12 Correct 5 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8556 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 5 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 6208 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 8692 KB Output is correct
23 Correct 6 ms 6436 KB Output is correct
24 Correct 5 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 6 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 70 ms 27412 KB Output is correct
30 Correct 62 ms 25772 KB Output is correct
31 Correct 61 ms 26284 KB Output is correct
32 Correct 67 ms 27056 KB Output is correct
33 Correct 57 ms 15532 KB Output is correct
34 Correct 64 ms 18056 KB Output is correct
35 Correct 62 ms 26544 KB Output is correct
36 Correct 59 ms 22508 KB Output is correct
37 Correct 12 ms 8540 KB Output is correct
38 Correct 69 ms 25876 KB Output is correct
39 Correct 14 ms 8540 KB Output is correct
40 Correct 34 ms 7660 KB Output is correct
41 Correct 91 ms 27448 KB Output is correct
42 Correct 87 ms 25872 KB Output is correct
43 Correct 13 ms 8652 KB Output is correct
44 Correct 65 ms 26800 KB Output is correct
45 Correct 65 ms 25796 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 70 ms 25844 KB Output is correct
48 Correct 82 ms 26424 KB Output is correct
49 Correct 13 ms 8792 KB Output is correct
50 Correct 63 ms 17816 KB Output is correct
51 Correct 57 ms 25660 KB Output is correct
52 Correct 14 ms 5724 KB Output is correct
53 Correct 21 ms 6492 KB Output is correct
54 Correct 56 ms 15548 KB Output is correct
55 Correct 64 ms 14528 KB Output is correct
56 Correct 157 ms 31404 KB Output is correct
57 Correct 157 ms 29880 KB Output is correct
58 Correct 134 ms 31948 KB Output is correct
59 Correct 140 ms 30408 KB Output is correct
60 Correct 150 ms 24264 KB Output is correct
61 Correct 147 ms 31616 KB Output is correct
62 Correct 149 ms 29384 KB Output is correct
63 Correct 116 ms 27892 KB Output is correct
64 Correct 60 ms 10868 KB Output is correct
65 Correct 153 ms 31468 KB Output is correct
66 Correct 59 ms 11408 KB Output is correct
67 Correct 53 ms 12024 KB Output is correct
68 Correct 83 ms 26508 KB Output is correct
69 Correct 146 ms 30548 KB Output is correct
70 Correct 22 ms 8920 KB Output is correct
71 Correct 82 ms 25516 KB Output is correct
72 Correct 146 ms 29276 KB Output is correct
73 Correct 12 ms 8796 KB Output is correct
74 Correct 74 ms 18648 KB Output is correct
75 Correct 168 ms 32400 KB Output is correct
76 Correct 12 ms 8584 KB Output is correct
77 Correct 66 ms 18736 KB Output is correct
78 Correct 117 ms 26800 KB Output is correct
79 Correct 49 ms 10712 KB Output is correct
80 Correct 36 ms 9552 KB Output is correct
81 Correct 17 ms 8796 KB Output is correct
82 Correct 17 ms 8796 KB Output is correct
83 Correct 181 ms 30736 KB Output is correct
84 Correct 166 ms 29972 KB Output is correct
85 Correct 187 ms 30860 KB Output is correct
86 Correct 144 ms 29004 KB Output is correct
87 Correct 188 ms 31452 KB Output is correct
88 Correct 172 ms 29068 KB Output is correct
89 Correct 147 ms 27696 KB Output is correct
90 Correct 124 ms 28076 KB Output is correct
91 Correct 101 ms 11512 KB Output is correct
92 Correct 174 ms 31172 KB Output is correct
93 Correct 173 ms 30048 KB Output is correct
94 Correct 75 ms 17848 KB Output is correct
95 Correct 84 ms 24692 KB Output is correct
96 Correct 196 ms 29700 KB Output is correct
97 Correct 86 ms 27080 KB Output is correct
98 Correct 82 ms 27120 KB Output is correct
99 Correct 163 ms 29752 KB Output is correct
100 Correct 80 ms 17668 KB Output is correct
101 Correct 75 ms 27856 KB Output is correct
102 Correct 205 ms 30700 KB Output is correct
103 Correct 68 ms 28496 KB Output is correct
104 Correct 78 ms 26768 KB Output is correct
105 Correct 132 ms 28304 KB Output is correct
106 Correct 38 ms 9164 KB Output is correct
107 Correct 44 ms 10960 KB Output is correct
108 Correct 50 ms 9896 KB Output is correct
109 Correct 52 ms 10784 KB Output is correct
110 Correct 177 ms 33080 KB Output is correct
111 Correct 190 ms 31560 KB Output is correct
112 Correct 192 ms 32024 KB Output is correct
113 Correct 182 ms 30124 KB Output is correct
114 Correct 219 ms 32708 KB Output is correct
115 Correct 197 ms 31436 KB Output is correct
116 Correct 185 ms 46260 KB Output is correct
117 Correct 164 ms 28480 KB Output is correct
118 Correct 114 ms 14440 KB Output is correct
119 Correct 57 ms 11408 KB Output is correct
120 Correct 192 ms 29884 KB Output is correct
121 Correct 74 ms 26296 KB Output is correct
122 Correct 97 ms 26292 KB Output is correct
123 Correct 191 ms 30736 KB Output is correct
124 Correct 69 ms 18280 KB Output is correct
125 Correct 89 ms 26800 KB Output is correct
126 Correct 166 ms 30080 KB Output is correct
127 Correct 62 ms 17624 KB Output is correct
128 Correct 76 ms 28600 KB Output is correct
129 Correct 204 ms 32880 KB Output is correct
130 Correct 75 ms 26712 KB Output is correct
131 Correct 95 ms 26808 KB Output is correct
132 Correct 164 ms 28484 KB Output is correct