Submission #987956

# Submission time Handle Problem Language Result Execution time Memory
987956 2024-05-23T19:44:21 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
227 ms 47116 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma gcc target("avx2")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp:5: warning: ignoring '#pragma gcc target' [-Wunknown-pragmas]
    5 | #pragma gcc target("avx2")
      | 
Main.cpp: In function 'node special(node)':
Main.cpp:6:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:6:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:6:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:6:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:6:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    6 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 6492 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 5 ms 6492 KB Output is correct
6 Correct 7 ms 8540 KB Output is correct
7 Correct 4 ms 8504 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 5 ms 8024 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 5 ms 8280 KB Output is correct
13 Correct 5 ms 6492 KB Output is correct
14 Correct 5 ms 8544 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 6492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 59 ms 27312 KB Output is correct
2 Correct 64 ms 27312 KB Output is correct
3 Correct 60 ms 26700 KB Output is correct
4 Correct 60 ms 27104 KB Output is correct
5 Correct 66 ms 18248 KB Output is correct
6 Correct 54 ms 17328 KB Output is correct
7 Correct 72 ms 27400 KB Output is correct
8 Correct 59 ms 27360 KB Output is correct
9 Correct 14 ms 5720 KB Output is correct
10 Correct 60 ms 25948 KB Output is correct
11 Correct 15 ms 8536 KB Output is correct
12 Correct 27 ms 9680 KB Output is correct
13 Correct 64 ms 27584 KB Output is correct
14 Correct 65 ms 25836 KB Output is correct
15 Correct 12 ms 8792 KB Output is correct
16 Correct 60 ms 25536 KB Output is correct
17 Correct 65 ms 27060 KB Output is correct
18 Correct 22 ms 6356 KB Output is correct
19 Correct 67 ms 27428 KB Output is correct
20 Correct 58 ms 24584 KB Output is correct
21 Correct 21 ms 8792 KB Output is correct
22 Correct 74 ms 17104 KB Output is correct
23 Correct 61 ms 25180 KB Output is correct
24 Correct 19 ms 6488 KB Output is correct
25 Correct 21 ms 5720 KB Output is correct
26 Correct 53 ms 14524 KB Output is correct
27 Correct 63 ms 14668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 6492 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 5 ms 6492 KB Output is correct
6 Correct 7 ms 8540 KB Output is correct
7 Correct 4 ms 8504 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 5 ms 8024 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 5 ms 8280 KB Output is correct
13 Correct 5 ms 6492 KB Output is correct
14 Correct 5 ms 8544 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 6492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 59 ms 27312 KB Output is correct
30 Correct 64 ms 27312 KB Output is correct
31 Correct 60 ms 26700 KB Output is correct
32 Correct 60 ms 27104 KB Output is correct
33 Correct 66 ms 18248 KB Output is correct
34 Correct 54 ms 17328 KB Output is correct
35 Correct 72 ms 27400 KB Output is correct
36 Correct 59 ms 27360 KB Output is correct
37 Correct 14 ms 5720 KB Output is correct
38 Correct 60 ms 25948 KB Output is correct
39 Correct 15 ms 8536 KB Output is correct
40 Correct 27 ms 9680 KB Output is correct
41 Correct 64 ms 27584 KB Output is correct
42 Correct 65 ms 25836 KB Output is correct
43 Correct 12 ms 8792 KB Output is correct
44 Correct 60 ms 25536 KB Output is correct
45 Correct 65 ms 27060 KB Output is correct
46 Correct 22 ms 6356 KB Output is correct
47 Correct 67 ms 27428 KB Output is correct
48 Correct 58 ms 24584 KB Output is correct
49 Correct 21 ms 8792 KB Output is correct
50 Correct 74 ms 17104 KB Output is correct
51 Correct 61 ms 25180 KB Output is correct
52 Correct 19 ms 6488 KB Output is correct
53 Correct 21 ms 5720 KB Output is correct
54 Correct 53 ms 14524 KB Output is correct
55 Correct 63 ms 14668 KB Output is correct
56 Correct 154 ms 30928 KB Output is correct
57 Correct 166 ms 29668 KB Output is correct
58 Correct 168 ms 29664 KB Output is correct
59 Correct 144 ms 28212 KB Output is correct
60 Correct 153 ms 24112 KB Output is correct
61 Correct 172 ms 31524 KB Output is correct
62 Correct 138 ms 29140 KB Output is correct
63 Correct 116 ms 28404 KB Output is correct
64 Correct 62 ms 10952 KB Output is correct
65 Correct 140 ms 31296 KB Output is correct
66 Correct 56 ms 11348 KB Output is correct
67 Correct 57 ms 12076 KB Output is correct
68 Correct 85 ms 26308 KB Output is correct
69 Correct 169 ms 30576 KB Output is correct
70 Correct 14 ms 9052 KB Output is correct
71 Correct 78 ms 28084 KB Output is correct
72 Correct 135 ms 30460 KB Output is correct
73 Correct 12 ms 8796 KB Output is correct
74 Correct 73 ms 18908 KB Output is correct
75 Correct 148 ms 33176 KB Output is correct
76 Correct 13 ms 8712 KB Output is correct
77 Correct 68 ms 18368 KB Output is correct
78 Correct 130 ms 28168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 10588 KB Output is correct
2 Correct 44 ms 9436 KB Output is correct
3 Correct 14 ms 8796 KB Output is correct
4 Correct 16 ms 8792 KB Output is correct
5 Correct 153 ms 31596 KB Output is correct
6 Correct 188 ms 29448 KB Output is correct
7 Correct 169 ms 30256 KB Output is correct
8 Correct 152 ms 29796 KB Output is correct
9 Correct 179 ms 31800 KB Output is correct
10 Correct 198 ms 29272 KB Output is correct
11 Correct 164 ms 27704 KB Output is correct
12 Correct 144 ms 27912 KB Output is correct
13 Correct 148 ms 11500 KB Output is correct
14 Correct 188 ms 31276 KB Output is correct
15 Correct 151 ms 29396 KB Output is correct
16 Correct 72 ms 18336 KB Output is correct
17 Correct 84 ms 27192 KB Output is correct
18 Correct 174 ms 30476 KB Output is correct
19 Correct 72 ms 25920 KB Output is correct
20 Correct 82 ms 27048 KB Output is correct
21 Correct 179 ms 28792 KB Output is correct
22 Correct 89 ms 16592 KB Output is correct
23 Correct 76 ms 27872 KB Output is correct
24 Correct 206 ms 32640 KB Output is correct
25 Correct 71 ms 26360 KB Output is correct
26 Correct 76 ms 24988 KB Output is correct
27 Correct 137 ms 28468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 6492 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 5 ms 6492 KB Output is correct
6 Correct 7 ms 8540 KB Output is correct
7 Correct 4 ms 8504 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 5 ms 8024 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 5 ms 8280 KB Output is correct
13 Correct 5 ms 6492 KB Output is correct
14 Correct 5 ms 8544 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 6492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 59 ms 27312 KB Output is correct
30 Correct 64 ms 27312 KB Output is correct
31 Correct 60 ms 26700 KB Output is correct
32 Correct 60 ms 27104 KB Output is correct
33 Correct 66 ms 18248 KB Output is correct
34 Correct 54 ms 17328 KB Output is correct
35 Correct 72 ms 27400 KB Output is correct
36 Correct 59 ms 27360 KB Output is correct
37 Correct 14 ms 5720 KB Output is correct
38 Correct 60 ms 25948 KB Output is correct
39 Correct 15 ms 8536 KB Output is correct
40 Correct 27 ms 9680 KB Output is correct
41 Correct 64 ms 27584 KB Output is correct
42 Correct 65 ms 25836 KB Output is correct
43 Correct 12 ms 8792 KB Output is correct
44 Correct 60 ms 25536 KB Output is correct
45 Correct 65 ms 27060 KB Output is correct
46 Correct 22 ms 6356 KB Output is correct
47 Correct 67 ms 27428 KB Output is correct
48 Correct 58 ms 24584 KB Output is correct
49 Correct 21 ms 8792 KB Output is correct
50 Correct 74 ms 17104 KB Output is correct
51 Correct 61 ms 25180 KB Output is correct
52 Correct 19 ms 6488 KB Output is correct
53 Correct 21 ms 5720 KB Output is correct
54 Correct 53 ms 14524 KB Output is correct
55 Correct 63 ms 14668 KB Output is correct
56 Correct 154 ms 30928 KB Output is correct
57 Correct 166 ms 29668 KB Output is correct
58 Correct 168 ms 29664 KB Output is correct
59 Correct 144 ms 28212 KB Output is correct
60 Correct 153 ms 24112 KB Output is correct
61 Correct 172 ms 31524 KB Output is correct
62 Correct 138 ms 29140 KB Output is correct
63 Correct 116 ms 28404 KB Output is correct
64 Correct 62 ms 10952 KB Output is correct
65 Correct 140 ms 31296 KB Output is correct
66 Correct 56 ms 11348 KB Output is correct
67 Correct 57 ms 12076 KB Output is correct
68 Correct 85 ms 26308 KB Output is correct
69 Correct 169 ms 30576 KB Output is correct
70 Correct 14 ms 9052 KB Output is correct
71 Correct 78 ms 28084 KB Output is correct
72 Correct 135 ms 30460 KB Output is correct
73 Correct 12 ms 8796 KB Output is correct
74 Correct 73 ms 18908 KB Output is correct
75 Correct 148 ms 33176 KB Output is correct
76 Correct 13 ms 8712 KB Output is correct
77 Correct 68 ms 18368 KB Output is correct
78 Correct 130 ms 28168 KB Output is correct
79 Correct 40 ms 10588 KB Output is correct
80 Correct 44 ms 9436 KB Output is correct
81 Correct 14 ms 8796 KB Output is correct
82 Correct 16 ms 8792 KB Output is correct
83 Correct 153 ms 31596 KB Output is correct
84 Correct 188 ms 29448 KB Output is correct
85 Correct 169 ms 30256 KB Output is correct
86 Correct 152 ms 29796 KB Output is correct
87 Correct 179 ms 31800 KB Output is correct
88 Correct 198 ms 29272 KB Output is correct
89 Correct 164 ms 27704 KB Output is correct
90 Correct 144 ms 27912 KB Output is correct
91 Correct 148 ms 11500 KB Output is correct
92 Correct 188 ms 31276 KB Output is correct
93 Correct 151 ms 29396 KB Output is correct
94 Correct 72 ms 18336 KB Output is correct
95 Correct 84 ms 27192 KB Output is correct
96 Correct 174 ms 30476 KB Output is correct
97 Correct 72 ms 25920 KB Output is correct
98 Correct 82 ms 27048 KB Output is correct
99 Correct 179 ms 28792 KB Output is correct
100 Correct 89 ms 16592 KB Output is correct
101 Correct 76 ms 27872 KB Output is correct
102 Correct 206 ms 32640 KB Output is correct
103 Correct 71 ms 26360 KB Output is correct
104 Correct 76 ms 24988 KB Output is correct
105 Correct 137 ms 28468 KB Output is correct
106 Correct 51 ms 9348 KB Output is correct
107 Correct 45 ms 10972 KB Output is correct
108 Correct 43 ms 9924 KB Output is correct
109 Correct 45 ms 10696 KB Output is correct
110 Correct 218 ms 33096 KB Output is correct
111 Correct 193 ms 30976 KB Output is correct
112 Correct 227 ms 32052 KB Output is correct
113 Correct 204 ms 29996 KB Output is correct
114 Correct 208 ms 33024 KB Output is correct
115 Correct 180 ms 30840 KB Output is correct
116 Correct 203 ms 47116 KB Output is correct
117 Correct 153 ms 28440 KB Output is correct
118 Correct 115 ms 14268 KB Output is correct
119 Correct 70 ms 11488 KB Output is correct
120 Correct 183 ms 30060 KB Output is correct
121 Correct 77 ms 27404 KB Output is correct
122 Correct 79 ms 27520 KB Output is correct
123 Correct 171 ms 30768 KB Output is correct
124 Correct 65 ms 18448 KB Output is correct
125 Correct 85 ms 26040 KB Output is correct
126 Correct 220 ms 30112 KB Output is correct
127 Correct 66 ms 14540 KB Output is correct
128 Correct 90 ms 24500 KB Output is correct
129 Correct 224 ms 33708 KB Output is correct
130 Correct 73 ms 23724 KB Output is correct
131 Correct 79 ms 24248 KB Output is correct
132 Correct 144 ms 29560 KB Output is correct