Submission #987951

# Submission time Handle Problem Language Result Execution time Memory
987951 2024-05-23T19:42:05 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++17
25 / 25
191 ms 46228 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:8:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:8:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 7 ms 8540 KB Output is correct
5 Correct 6 ms 5724 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 5 ms 8028 KB Output is correct
10 Correct 7 ms 8540 KB Output is correct
11 Correct 5 ms 6148 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 4 ms 8400 KB Output is correct
17 Correct 4 ms 8540 KB Output is correct
18 Correct 4 ms 8284 KB Output is correct
19 Correct 6 ms 8536 KB Output is correct
20 Correct 6 ms 8812 KB Output is correct
21 Correct 4 ms 8004 KB Output is correct
22 Correct 5 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 26296 KB Output is correct
2 Correct 86 ms 26244 KB Output is correct
3 Correct 67 ms 25844 KB Output is correct
4 Correct 63 ms 25956 KB Output is correct
5 Correct 53 ms 18300 KB Output is correct
6 Correct 66 ms 17348 KB Output is correct
7 Correct 60 ms 25988 KB Output is correct
8 Correct 55 ms 27056 KB Output is correct
9 Correct 20 ms 8540 KB Output is correct
10 Correct 73 ms 27052 KB Output is correct
11 Correct 15 ms 8540 KB Output is correct
12 Correct 28 ms 9688 KB Output is correct
13 Correct 68 ms 26700 KB Output is correct
14 Correct 64 ms 27536 KB Output is correct
15 Correct 15 ms 8796 KB Output is correct
16 Correct 76 ms 25612 KB Output is correct
17 Correct 79 ms 25772 KB Output is correct
18 Correct 21 ms 9180 KB Output is correct
19 Correct 66 ms 25880 KB Output is correct
20 Correct 61 ms 26700 KB Output is correct
21 Correct 19 ms 8840 KB Output is correct
22 Correct 67 ms 18888 KB Output is correct
23 Correct 58 ms 23292 KB Output is correct
24 Correct 12 ms 8536 KB Output is correct
25 Correct 12 ms 8540 KB Output is correct
26 Correct 52 ms 15544 KB Output is correct
27 Correct 53 ms 17672 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 7 ms 8540 KB Output is correct
5 Correct 6 ms 5724 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 5 ms 8028 KB Output is correct
10 Correct 7 ms 8540 KB Output is correct
11 Correct 5 ms 6148 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 4 ms 8400 KB Output is correct
17 Correct 4 ms 8540 KB Output is correct
18 Correct 4 ms 8284 KB Output is correct
19 Correct 6 ms 8536 KB Output is correct
20 Correct 6 ms 8812 KB Output is correct
21 Correct 4 ms 8004 KB Output is correct
22 Correct 5 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8640 KB Output is correct
29 Correct 66 ms 26296 KB Output is correct
30 Correct 86 ms 26244 KB Output is correct
31 Correct 67 ms 25844 KB Output is correct
32 Correct 63 ms 25956 KB Output is correct
33 Correct 53 ms 18300 KB Output is correct
34 Correct 66 ms 17348 KB Output is correct
35 Correct 60 ms 25988 KB Output is correct
36 Correct 55 ms 27056 KB Output is correct
37 Correct 20 ms 8540 KB Output is correct
38 Correct 73 ms 27052 KB Output is correct
39 Correct 15 ms 8540 KB Output is correct
40 Correct 28 ms 9688 KB Output is correct
41 Correct 68 ms 26700 KB Output is correct
42 Correct 64 ms 27536 KB Output is correct
43 Correct 15 ms 8796 KB Output is correct
44 Correct 76 ms 25612 KB Output is correct
45 Correct 79 ms 25772 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 66 ms 25880 KB Output is correct
48 Correct 61 ms 26700 KB Output is correct
49 Correct 19 ms 8840 KB Output is correct
50 Correct 67 ms 18888 KB Output is correct
51 Correct 58 ms 23292 KB Output is correct
52 Correct 12 ms 8536 KB Output is correct
53 Correct 12 ms 8540 KB Output is correct
54 Correct 52 ms 15544 KB Output is correct
55 Correct 53 ms 17672 KB Output is correct
56 Correct 178 ms 33480 KB Output is correct
57 Correct 140 ms 31368 KB Output is correct
58 Correct 168 ms 32620 KB Output is correct
59 Correct 121 ms 30620 KB Output is correct
60 Correct 142 ms 24424 KB Output is correct
61 Correct 133 ms 30760 KB Output is correct
62 Correct 118 ms 28404 KB Output is correct
63 Correct 120 ms 28484 KB Output is correct
64 Correct 58 ms 10952 KB Output is correct
65 Correct 170 ms 30116 KB Output is correct
66 Correct 51 ms 11408 KB Output is correct
67 Correct 52 ms 12040 KB Output is correct
68 Correct 72 ms 26800 KB Output is correct
69 Correct 150 ms 31348 KB Output is correct
70 Correct 15 ms 9048 KB Output is correct
71 Correct 93 ms 28068 KB Output is correct
72 Correct 130 ms 29280 KB Output is correct
73 Correct 13 ms 8796 KB Output is correct
74 Correct 65 ms 18632 KB Output is correct
75 Correct 166 ms 32452 KB Output is correct
76 Correct 21 ms 8712 KB Output is correct
77 Correct 63 ms 18868 KB Output is correct
78 Correct 108 ms 28536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 10712 KB Output is correct
2 Correct 37 ms 9432 KB Output is correct
3 Correct 13 ms 8792 KB Output is correct
4 Correct 19 ms 8796 KB Output is correct
5 Correct 174 ms 32044 KB Output is correct
6 Correct 160 ms 31044 KB Output is correct
7 Correct 170 ms 30120 KB Output is correct
8 Correct 152 ms 28748 KB Output is correct
9 Correct 163 ms 32464 KB Output is correct
10 Correct 191 ms 30564 KB Output is correct
11 Correct 145 ms 29328 KB Output is correct
12 Correct 127 ms 28928 KB Output is correct
13 Correct 104 ms 12472 KB Output is correct
14 Correct 189 ms 30496 KB Output is correct
15 Correct 142 ms 31036 KB Output is correct
16 Correct 60 ms 19408 KB Output is correct
17 Correct 72 ms 27576 KB Output is correct
18 Correct 152 ms 29884 KB Output is correct
19 Correct 78 ms 26304 KB Output is correct
20 Correct 67 ms 26304 KB Output is correct
21 Correct 137 ms 30436 KB Output is correct
22 Correct 71 ms 18624 KB Output is correct
23 Correct 68 ms 27428 KB Output is correct
24 Correct 156 ms 31100 KB Output is correct
25 Correct 58 ms 27836 KB Output is correct
26 Correct 74 ms 28084 KB Output is correct
27 Correct 125 ms 29580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 7 ms 8540 KB Output is correct
5 Correct 6 ms 5724 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 5 ms 8028 KB Output is correct
10 Correct 7 ms 8540 KB Output is correct
11 Correct 5 ms 6148 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 4 ms 8400 KB Output is correct
17 Correct 4 ms 8540 KB Output is correct
18 Correct 4 ms 8284 KB Output is correct
19 Correct 6 ms 8536 KB Output is correct
20 Correct 6 ms 8812 KB Output is correct
21 Correct 4 ms 8004 KB Output is correct
22 Correct 5 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8640 KB Output is correct
29 Correct 66 ms 26296 KB Output is correct
30 Correct 86 ms 26244 KB Output is correct
31 Correct 67 ms 25844 KB Output is correct
32 Correct 63 ms 25956 KB Output is correct
33 Correct 53 ms 18300 KB Output is correct
34 Correct 66 ms 17348 KB Output is correct
35 Correct 60 ms 25988 KB Output is correct
36 Correct 55 ms 27056 KB Output is correct
37 Correct 20 ms 8540 KB Output is correct
38 Correct 73 ms 27052 KB Output is correct
39 Correct 15 ms 8540 KB Output is correct
40 Correct 28 ms 9688 KB Output is correct
41 Correct 68 ms 26700 KB Output is correct
42 Correct 64 ms 27536 KB Output is correct
43 Correct 15 ms 8796 KB Output is correct
44 Correct 76 ms 25612 KB Output is correct
45 Correct 79 ms 25772 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 66 ms 25880 KB Output is correct
48 Correct 61 ms 26700 KB Output is correct
49 Correct 19 ms 8840 KB Output is correct
50 Correct 67 ms 18888 KB Output is correct
51 Correct 58 ms 23292 KB Output is correct
52 Correct 12 ms 8536 KB Output is correct
53 Correct 12 ms 8540 KB Output is correct
54 Correct 52 ms 15544 KB Output is correct
55 Correct 53 ms 17672 KB Output is correct
56 Correct 178 ms 33480 KB Output is correct
57 Correct 140 ms 31368 KB Output is correct
58 Correct 168 ms 32620 KB Output is correct
59 Correct 121 ms 30620 KB Output is correct
60 Correct 142 ms 24424 KB Output is correct
61 Correct 133 ms 30760 KB Output is correct
62 Correct 118 ms 28404 KB Output is correct
63 Correct 120 ms 28484 KB Output is correct
64 Correct 58 ms 10952 KB Output is correct
65 Correct 170 ms 30116 KB Output is correct
66 Correct 51 ms 11408 KB Output is correct
67 Correct 52 ms 12040 KB Output is correct
68 Correct 72 ms 26800 KB Output is correct
69 Correct 150 ms 31348 KB Output is correct
70 Correct 15 ms 9048 KB Output is correct
71 Correct 93 ms 28068 KB Output is correct
72 Correct 130 ms 29280 KB Output is correct
73 Correct 13 ms 8796 KB Output is correct
74 Correct 65 ms 18632 KB Output is correct
75 Correct 166 ms 32452 KB Output is correct
76 Correct 21 ms 8712 KB Output is correct
77 Correct 63 ms 18868 KB Output is correct
78 Correct 108 ms 28536 KB Output is correct
79 Correct 40 ms 10712 KB Output is correct
80 Correct 37 ms 9432 KB Output is correct
81 Correct 13 ms 8792 KB Output is correct
82 Correct 19 ms 8796 KB Output is correct
83 Correct 174 ms 32044 KB Output is correct
84 Correct 160 ms 31044 KB Output is correct
85 Correct 170 ms 30120 KB Output is correct
86 Correct 152 ms 28748 KB Output is correct
87 Correct 163 ms 32464 KB Output is correct
88 Correct 191 ms 30564 KB Output is correct
89 Correct 145 ms 29328 KB Output is correct
90 Correct 127 ms 28928 KB Output is correct
91 Correct 104 ms 12472 KB Output is correct
92 Correct 189 ms 30496 KB Output is correct
93 Correct 142 ms 31036 KB Output is correct
94 Correct 60 ms 19408 KB Output is correct
95 Correct 72 ms 27576 KB Output is correct
96 Correct 152 ms 29884 KB Output is correct
97 Correct 78 ms 26304 KB Output is correct
98 Correct 67 ms 26304 KB Output is correct
99 Correct 137 ms 30436 KB Output is correct
100 Correct 71 ms 18624 KB Output is correct
101 Correct 68 ms 27428 KB Output is correct
102 Correct 156 ms 31100 KB Output is correct
103 Correct 58 ms 27836 KB Output is correct
104 Correct 74 ms 28084 KB Output is correct
105 Correct 125 ms 29580 KB Output is correct
106 Correct 36 ms 9388 KB Output is correct
107 Correct 42 ms 10944 KB Output is correct
108 Correct 38 ms 9944 KB Output is correct
109 Correct 44 ms 10696 KB Output is correct
110 Correct 178 ms 32060 KB Output is correct
111 Correct 174 ms 30756 KB Output is correct
112 Correct 156 ms 32316 KB Output is correct
113 Correct 163 ms 30784 KB Output is correct
114 Correct 152 ms 31784 KB Output is correct
115 Correct 168 ms 32332 KB Output is correct
116 Correct 163 ms 46228 KB Output is correct
117 Correct 140 ms 29920 KB Output is correct
118 Correct 113 ms 14284 KB Output is correct
119 Correct 50 ms 11344 KB Output is correct
120 Correct 155 ms 31544 KB Output is correct
121 Correct 81 ms 27772 KB Output is correct
122 Correct 77 ms 28088 KB Output is correct
123 Correct 162 ms 30756 KB Output is correct
124 Correct 80 ms 18988 KB Output is correct
125 Correct 87 ms 27324 KB Output is correct
126 Correct 144 ms 29888 KB Output is correct
127 Correct 72 ms 19132 KB Output is correct
128 Correct 84 ms 27156 KB Output is correct
129 Correct 149 ms 32812 KB Output is correct
130 Correct 67 ms 27040 KB Output is correct
131 Correct 73 ms 27072 KB Output is correct
132 Correct 138 ms 29628 KB Output is correct