Submission #987950

# Submission time Handle Problem Language Result Execution time Memory
987950 2024-05-23T19:41:53 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
235 ms 48020 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:8:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:8:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8576 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 6452 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 6 ms 8540 KB Output is correct
7 Correct 6 ms 6488 KB Output is correct
8 Correct 5 ms 8536 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 6 ms 8552 KB Output is correct
14 Correct 7 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 4 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 8540 KB Output is correct
21 Correct 4 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 6488 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8500 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 58 ms 26036 KB Output is correct
2 Correct 67 ms 26248 KB Output is correct
3 Correct 60 ms 26256 KB Output is correct
4 Correct 64 ms 27572 KB Output is correct
5 Correct 61 ms 18116 KB Output is correct
6 Correct 62 ms 17336 KB Output is correct
7 Correct 72 ms 25504 KB Output is correct
8 Correct 59 ms 26800 KB Output is correct
9 Correct 12 ms 8536 KB Output is correct
10 Correct 62 ms 25896 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 27 ms 7636 KB Output is correct
13 Correct 76 ms 25696 KB Output is correct
14 Correct 66 ms 26948 KB Output is correct
15 Correct 21 ms 8796 KB Output is correct
16 Correct 64 ms 26096 KB Output is correct
17 Correct 61 ms 25780 KB Output is correct
18 Correct 20 ms 9180 KB Output is correct
19 Correct 67 ms 27696 KB Output is correct
20 Correct 58 ms 27316 KB Output is correct
21 Correct 13 ms 8688 KB Output is correct
22 Correct 57 ms 15660 KB Output is correct
23 Correct 61 ms 26960 KB Output is correct
24 Correct 12 ms 8540 KB Output is correct
25 Correct 20 ms 8616 KB Output is correct
26 Correct 50 ms 15296 KB Output is correct
27 Correct 51 ms 18112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8576 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 6452 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 6 ms 8540 KB Output is correct
7 Correct 6 ms 6488 KB Output is correct
8 Correct 5 ms 8536 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 6 ms 8552 KB Output is correct
14 Correct 7 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 4 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 8540 KB Output is correct
21 Correct 4 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 6488 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8500 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 58 ms 26036 KB Output is correct
30 Correct 67 ms 26248 KB Output is correct
31 Correct 60 ms 26256 KB Output is correct
32 Correct 64 ms 27572 KB Output is correct
33 Correct 61 ms 18116 KB Output is correct
34 Correct 62 ms 17336 KB Output is correct
35 Correct 72 ms 25504 KB Output is correct
36 Correct 59 ms 26800 KB Output is correct
37 Correct 12 ms 8536 KB Output is correct
38 Correct 62 ms 25896 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 27 ms 7636 KB Output is correct
41 Correct 76 ms 25696 KB Output is correct
42 Correct 66 ms 26948 KB Output is correct
43 Correct 21 ms 8796 KB Output is correct
44 Correct 64 ms 26096 KB Output is correct
45 Correct 61 ms 25780 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 67 ms 27696 KB Output is correct
48 Correct 58 ms 27316 KB Output is correct
49 Correct 13 ms 8688 KB Output is correct
50 Correct 57 ms 15660 KB Output is correct
51 Correct 61 ms 26960 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 20 ms 8616 KB Output is correct
54 Correct 50 ms 15296 KB Output is correct
55 Correct 51 ms 18112 KB Output is correct
56 Correct 144 ms 32008 KB Output is correct
57 Correct 144 ms 31184 KB Output is correct
58 Correct 143 ms 30712 KB Output is correct
59 Correct 150 ms 29236 KB Output is correct
60 Correct 155 ms 23576 KB Output is correct
61 Correct 196 ms 30116 KB Output is correct
62 Correct 134 ms 25436 KB Output is correct
63 Correct 156 ms 23576 KB Output is correct
64 Correct 54 ms 7924 KB Output is correct
65 Correct 141 ms 28576 KB Output is correct
66 Correct 62 ms 11316 KB Output is correct
67 Correct 59 ms 12032 KB Output is correct
68 Correct 80 ms 26288 KB Output is correct
69 Correct 168 ms 31540 KB Output is correct
70 Correct 17 ms 9052 KB Output is correct
71 Correct 86 ms 27092 KB Output is correct
72 Correct 136 ms 28108 KB Output is correct
73 Correct 13 ms 8792 KB Output is correct
74 Correct 76 ms 18640 KB Output is correct
75 Correct 190 ms 32336 KB Output is correct
76 Correct 14 ms 8736 KB Output is correct
77 Correct 61 ms 17460 KB Output is correct
78 Correct 144 ms 28156 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 10556 KB Output is correct
2 Correct 46 ms 9456 KB Output is correct
3 Correct 14 ms 8796 KB Output is correct
4 Correct 14 ms 8796 KB Output is correct
5 Correct 173 ms 32172 KB Output is correct
6 Correct 147 ms 29500 KB Output is correct
7 Correct 169 ms 31164 KB Output is correct
8 Correct 162 ms 29300 KB Output is correct
9 Correct 174 ms 32732 KB Output is correct
10 Correct 177 ms 30008 KB Output is correct
11 Correct 160 ms 29124 KB Output is correct
12 Correct 125 ms 27756 KB Output is correct
13 Correct 106 ms 12392 KB Output is correct
14 Correct 140 ms 30276 KB Output is correct
15 Correct 179 ms 29732 KB Output is correct
16 Correct 65 ms 19260 KB Output is correct
17 Correct 74 ms 26044 KB Output is correct
18 Correct 163 ms 29676 KB Output is correct
19 Correct 74 ms 27840 KB Output is correct
20 Correct 79 ms 26408 KB Output is correct
21 Correct 140 ms 29232 KB Output is correct
22 Correct 74 ms 17728 KB Output is correct
23 Correct 75 ms 27840 KB Output is correct
24 Correct 171 ms 30784 KB Output is correct
25 Correct 71 ms 26504 KB Output is correct
26 Correct 59 ms 26972 KB Output is correct
27 Correct 126 ms 28824 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8576 KB Output is correct
2 Correct 6 ms 8540 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 6452 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 6 ms 8540 KB Output is correct
7 Correct 6 ms 6488 KB Output is correct
8 Correct 5 ms 8536 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 6 ms 8552 KB Output is correct
14 Correct 7 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 4 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 8540 KB Output is correct
21 Correct 4 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 6488 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 5 ms 8500 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 58 ms 26036 KB Output is correct
30 Correct 67 ms 26248 KB Output is correct
31 Correct 60 ms 26256 KB Output is correct
32 Correct 64 ms 27572 KB Output is correct
33 Correct 61 ms 18116 KB Output is correct
34 Correct 62 ms 17336 KB Output is correct
35 Correct 72 ms 25504 KB Output is correct
36 Correct 59 ms 26800 KB Output is correct
37 Correct 12 ms 8536 KB Output is correct
38 Correct 62 ms 25896 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 27 ms 7636 KB Output is correct
41 Correct 76 ms 25696 KB Output is correct
42 Correct 66 ms 26948 KB Output is correct
43 Correct 21 ms 8796 KB Output is correct
44 Correct 64 ms 26096 KB Output is correct
45 Correct 61 ms 25780 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 67 ms 27696 KB Output is correct
48 Correct 58 ms 27316 KB Output is correct
49 Correct 13 ms 8688 KB Output is correct
50 Correct 57 ms 15660 KB Output is correct
51 Correct 61 ms 26960 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 20 ms 8616 KB Output is correct
54 Correct 50 ms 15296 KB Output is correct
55 Correct 51 ms 18112 KB Output is correct
56 Correct 144 ms 32008 KB Output is correct
57 Correct 144 ms 31184 KB Output is correct
58 Correct 143 ms 30712 KB Output is correct
59 Correct 150 ms 29236 KB Output is correct
60 Correct 155 ms 23576 KB Output is correct
61 Correct 196 ms 30116 KB Output is correct
62 Correct 134 ms 25436 KB Output is correct
63 Correct 156 ms 23576 KB Output is correct
64 Correct 54 ms 7924 KB Output is correct
65 Correct 141 ms 28576 KB Output is correct
66 Correct 62 ms 11316 KB Output is correct
67 Correct 59 ms 12032 KB Output is correct
68 Correct 80 ms 26288 KB Output is correct
69 Correct 168 ms 31540 KB Output is correct
70 Correct 17 ms 9052 KB Output is correct
71 Correct 86 ms 27092 KB Output is correct
72 Correct 136 ms 28108 KB Output is correct
73 Correct 13 ms 8792 KB Output is correct
74 Correct 76 ms 18640 KB Output is correct
75 Correct 190 ms 32336 KB Output is correct
76 Correct 14 ms 8736 KB Output is correct
77 Correct 61 ms 17460 KB Output is correct
78 Correct 144 ms 28156 KB Output is correct
79 Correct 46 ms 10556 KB Output is correct
80 Correct 46 ms 9456 KB Output is correct
81 Correct 14 ms 8796 KB Output is correct
82 Correct 14 ms 8796 KB Output is correct
83 Correct 173 ms 32172 KB Output is correct
84 Correct 147 ms 29500 KB Output is correct
85 Correct 169 ms 31164 KB Output is correct
86 Correct 162 ms 29300 KB Output is correct
87 Correct 174 ms 32732 KB Output is correct
88 Correct 177 ms 30008 KB Output is correct
89 Correct 160 ms 29124 KB Output is correct
90 Correct 125 ms 27756 KB Output is correct
91 Correct 106 ms 12392 KB Output is correct
92 Correct 140 ms 30276 KB Output is correct
93 Correct 179 ms 29732 KB Output is correct
94 Correct 65 ms 19260 KB Output is correct
95 Correct 74 ms 26044 KB Output is correct
96 Correct 163 ms 29676 KB Output is correct
97 Correct 74 ms 27840 KB Output is correct
98 Correct 79 ms 26408 KB Output is correct
99 Correct 140 ms 29232 KB Output is correct
100 Correct 74 ms 17728 KB Output is correct
101 Correct 75 ms 27840 KB Output is correct
102 Correct 171 ms 30784 KB Output is correct
103 Correct 71 ms 26504 KB Output is correct
104 Correct 59 ms 26972 KB Output is correct
105 Correct 126 ms 28824 KB Output is correct
106 Correct 36 ms 9176 KB Output is correct
107 Correct 52 ms 11020 KB Output is correct
108 Correct 50 ms 9856 KB Output is correct
109 Correct 42 ms 10708 KB Output is correct
110 Correct 192 ms 33344 KB Output is correct
111 Correct 198 ms 31012 KB Output is correct
112 Correct 235 ms 31308 KB Output is correct
113 Correct 167 ms 31540 KB Output is correct
114 Correct 160 ms 32308 KB Output is correct
115 Correct 150 ms 30372 KB Output is correct
116 Correct 201 ms 48020 KB Output is correct
117 Correct 174 ms 28460 KB Output is correct
118 Correct 120 ms 14288 KB Output is correct
119 Correct 61 ms 11340 KB Output is correct
120 Correct 193 ms 30464 KB Output is correct
121 Correct 71 ms 27576 KB Output is correct
122 Correct 81 ms 26684 KB Output is correct
123 Correct 190 ms 30512 KB Output is correct
124 Correct 64 ms 18364 KB Output is correct
125 Correct 101 ms 27116 KB Output is correct
126 Correct 175 ms 30056 KB Output is correct
127 Correct 60 ms 18588 KB Output is correct
128 Correct 88 ms 26916 KB Output is correct
129 Correct 192 ms 32220 KB Output is correct
130 Correct 74 ms 26184 KB Output is correct
131 Correct 82 ms 26816 KB Output is correct
132 Correct 169 ms 28512 KB Output is correct