Submission #987949

# Submission time Handle Problem Language Result Execution time Memory
987949 2024-05-23T19:41:36 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
225 ms 46628 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:359: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                       ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:917: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
Main.cpp: In function 'int main()':
Main.cpp:8:1866: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2068: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~^~~~~~~~~~~~~~
Main.cpp:8:2152: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;int inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 6 ms 8560 KB Output is correct
4 Correct 6 ms 5588 KB Output is correct
5 Correct 5 ms 8644 KB Output is correct
6 Correct 6 ms 8548 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 5 ms 6492 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8608 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 4 ms 6232 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8264 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 4 ms 6492 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 5468 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 6 ms 8280 KB Output is correct
25 Correct 6 ms 8284 KB Output is correct
26 Correct 10 ms 8540 KB Output is correct
27 Correct 7 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 26040 KB Output is correct
2 Correct 67 ms 25732 KB Output is correct
3 Correct 61 ms 25852 KB Output is correct
4 Correct 62 ms 27208 KB Output is correct
5 Correct 55 ms 17928 KB Output is correct
6 Correct 73 ms 15560 KB Output is correct
7 Correct 65 ms 25944 KB Output is correct
8 Correct 66 ms 25764 KB Output is correct
9 Correct 14 ms 8536 KB Output is correct
10 Correct 96 ms 25876 KB Output is correct
11 Correct 13 ms 5804 KB Output is correct
12 Correct 34 ms 9672 KB Output is correct
13 Correct 74 ms 26904 KB Output is correct
14 Correct 74 ms 26644 KB Output is correct
15 Correct 21 ms 8720 KB Output is correct
16 Correct 75 ms 25476 KB Output is correct
17 Correct 72 ms 25788 KB Output is correct
18 Correct 20 ms 9180 KB Output is correct
19 Correct 62 ms 25892 KB Output is correct
20 Correct 61 ms 28000 KB Output is correct
21 Correct 14 ms 8796 KB Output is correct
22 Correct 62 ms 18592 KB Output is correct
23 Correct 78 ms 25264 KB Output is correct
24 Correct 14 ms 8796 KB Output is correct
25 Correct 13 ms 8540 KB Output is correct
26 Correct 49 ms 17860 KB Output is correct
27 Correct 58 ms 17800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 6 ms 8560 KB Output is correct
4 Correct 6 ms 5588 KB Output is correct
5 Correct 5 ms 8644 KB Output is correct
6 Correct 6 ms 8548 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 5 ms 6492 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8608 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 4 ms 6232 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8264 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 4 ms 6492 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 5468 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 6 ms 8280 KB Output is correct
25 Correct 6 ms 8284 KB Output is correct
26 Correct 10 ms 8540 KB Output is correct
27 Correct 7 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 66 ms 26040 KB Output is correct
30 Correct 67 ms 25732 KB Output is correct
31 Correct 61 ms 25852 KB Output is correct
32 Correct 62 ms 27208 KB Output is correct
33 Correct 55 ms 17928 KB Output is correct
34 Correct 73 ms 15560 KB Output is correct
35 Correct 65 ms 25944 KB Output is correct
36 Correct 66 ms 25764 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 96 ms 25876 KB Output is correct
39 Correct 13 ms 5804 KB Output is correct
40 Correct 34 ms 9672 KB Output is correct
41 Correct 74 ms 26904 KB Output is correct
42 Correct 74 ms 26644 KB Output is correct
43 Correct 21 ms 8720 KB Output is correct
44 Correct 75 ms 25476 KB Output is correct
45 Correct 72 ms 25788 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 62 ms 25892 KB Output is correct
48 Correct 61 ms 28000 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 62 ms 18592 KB Output is correct
51 Correct 78 ms 25264 KB Output is correct
52 Correct 14 ms 8796 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 49 ms 17860 KB Output is correct
55 Correct 58 ms 17800 KB Output is correct
56 Correct 157 ms 32248 KB Output is correct
57 Correct 139 ms 31432 KB Output is correct
58 Correct 135 ms 31612 KB Output is correct
59 Correct 138 ms 30888 KB Output is correct
60 Correct 143 ms 24124 KB Output is correct
61 Correct 160 ms 31040 KB Output is correct
62 Correct 127 ms 29736 KB Output is correct
63 Correct 124 ms 27120 KB Output is correct
64 Correct 55 ms 10960 KB Output is correct
65 Correct 134 ms 30248 KB Output is correct
66 Correct 51 ms 11364 KB Output is correct
67 Correct 54 ms 10208 KB Output is correct
68 Correct 94 ms 27300 KB Output is correct
69 Correct 152 ms 30624 KB Output is correct
70 Correct 14 ms 9044 KB Output is correct
71 Correct 72 ms 28144 KB Output is correct
72 Correct 154 ms 30620 KB Output is correct
73 Correct 21 ms 8796 KB Output is correct
74 Correct 67 ms 19148 KB Output is correct
75 Correct 170 ms 32400 KB Output is correct
76 Correct 13 ms 8540 KB Output is correct
77 Correct 62 ms 17768 KB Output is correct
78 Correct 128 ms 26928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 10708 KB Output is correct
2 Correct 37 ms 9584 KB Output is correct
3 Correct 17 ms 5720 KB Output is correct
4 Correct 14 ms 5976 KB Output is correct
5 Correct 225 ms 30536 KB Output is correct
6 Correct 202 ms 29412 KB Output is correct
7 Correct 196 ms 30844 KB Output is correct
8 Correct 168 ms 30584 KB Output is correct
9 Correct 199 ms 30708 KB Output is correct
10 Correct 152 ms 30036 KB Output is correct
11 Correct 165 ms 29384 KB Output is correct
12 Correct 145 ms 29428 KB Output is correct
13 Correct 113 ms 12480 KB Output is correct
14 Correct 154 ms 29488 KB Output is correct
15 Correct 181 ms 29924 KB Output is correct
16 Correct 64 ms 17860 KB Output is correct
17 Correct 84 ms 26548 KB Output is correct
18 Correct 168 ms 30620 KB Output is correct
19 Correct 73 ms 26296 KB Output is correct
20 Correct 89 ms 25780 KB Output is correct
21 Correct 162 ms 29684 KB Output is correct
22 Correct 64 ms 15792 KB Output is correct
23 Correct 80 ms 26040 KB Output is correct
24 Correct 190 ms 30676 KB Output is correct
25 Correct 74 ms 26284 KB Output is correct
26 Correct 71 ms 26320 KB Output is correct
27 Correct 146 ms 30092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 8540 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 6 ms 8560 KB Output is correct
4 Correct 6 ms 5588 KB Output is correct
5 Correct 5 ms 8644 KB Output is correct
6 Correct 6 ms 8548 KB Output is correct
7 Correct 5 ms 8540 KB Output is correct
8 Correct 5 ms 6492 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8608 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 4 ms 6232 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8264 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 4 ms 6492 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8492 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 5 ms 5468 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 6 ms 8280 KB Output is correct
25 Correct 6 ms 8284 KB Output is correct
26 Correct 10 ms 8540 KB Output is correct
27 Correct 7 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 66 ms 26040 KB Output is correct
30 Correct 67 ms 25732 KB Output is correct
31 Correct 61 ms 25852 KB Output is correct
32 Correct 62 ms 27208 KB Output is correct
33 Correct 55 ms 17928 KB Output is correct
34 Correct 73 ms 15560 KB Output is correct
35 Correct 65 ms 25944 KB Output is correct
36 Correct 66 ms 25764 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 96 ms 25876 KB Output is correct
39 Correct 13 ms 5804 KB Output is correct
40 Correct 34 ms 9672 KB Output is correct
41 Correct 74 ms 26904 KB Output is correct
42 Correct 74 ms 26644 KB Output is correct
43 Correct 21 ms 8720 KB Output is correct
44 Correct 75 ms 25476 KB Output is correct
45 Correct 72 ms 25788 KB Output is correct
46 Correct 20 ms 9180 KB Output is correct
47 Correct 62 ms 25892 KB Output is correct
48 Correct 61 ms 28000 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 62 ms 18592 KB Output is correct
51 Correct 78 ms 25264 KB Output is correct
52 Correct 14 ms 8796 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 49 ms 17860 KB Output is correct
55 Correct 58 ms 17800 KB Output is correct
56 Correct 157 ms 32248 KB Output is correct
57 Correct 139 ms 31432 KB Output is correct
58 Correct 135 ms 31612 KB Output is correct
59 Correct 138 ms 30888 KB Output is correct
60 Correct 143 ms 24124 KB Output is correct
61 Correct 160 ms 31040 KB Output is correct
62 Correct 127 ms 29736 KB Output is correct
63 Correct 124 ms 27120 KB Output is correct
64 Correct 55 ms 10960 KB Output is correct
65 Correct 134 ms 30248 KB Output is correct
66 Correct 51 ms 11364 KB Output is correct
67 Correct 54 ms 10208 KB Output is correct
68 Correct 94 ms 27300 KB Output is correct
69 Correct 152 ms 30624 KB Output is correct
70 Correct 14 ms 9044 KB Output is correct
71 Correct 72 ms 28144 KB Output is correct
72 Correct 154 ms 30620 KB Output is correct
73 Correct 21 ms 8796 KB Output is correct
74 Correct 67 ms 19148 KB Output is correct
75 Correct 170 ms 32400 KB Output is correct
76 Correct 13 ms 8540 KB Output is correct
77 Correct 62 ms 17768 KB Output is correct
78 Correct 128 ms 26928 KB Output is correct
79 Correct 43 ms 10708 KB Output is correct
80 Correct 37 ms 9584 KB Output is correct
81 Correct 17 ms 5720 KB Output is correct
82 Correct 14 ms 5976 KB Output is correct
83 Correct 225 ms 30536 KB Output is correct
84 Correct 202 ms 29412 KB Output is correct
85 Correct 196 ms 30844 KB Output is correct
86 Correct 168 ms 30584 KB Output is correct
87 Correct 199 ms 30708 KB Output is correct
88 Correct 152 ms 30036 KB Output is correct
89 Correct 165 ms 29384 KB Output is correct
90 Correct 145 ms 29428 KB Output is correct
91 Correct 113 ms 12480 KB Output is correct
92 Correct 154 ms 29488 KB Output is correct
93 Correct 181 ms 29924 KB Output is correct
94 Correct 64 ms 17860 KB Output is correct
95 Correct 84 ms 26548 KB Output is correct
96 Correct 168 ms 30620 KB Output is correct
97 Correct 73 ms 26296 KB Output is correct
98 Correct 89 ms 25780 KB Output is correct
99 Correct 162 ms 29684 KB Output is correct
100 Correct 64 ms 15792 KB Output is correct
101 Correct 80 ms 26040 KB Output is correct
102 Correct 190 ms 30676 KB Output is correct
103 Correct 74 ms 26284 KB Output is correct
104 Correct 71 ms 26320 KB Output is correct
105 Correct 146 ms 30092 KB Output is correct
106 Correct 39 ms 9172 KB Output is correct
107 Correct 46 ms 10948 KB Output is correct
108 Correct 41 ms 9672 KB Output is correct
109 Correct 42 ms 10704 KB Output is correct
110 Correct 204 ms 31856 KB Output is correct
111 Correct 177 ms 31548 KB Output is correct
112 Correct 175 ms 31032 KB Output is correct
113 Correct 175 ms 31548 KB Output is correct
114 Correct 162 ms 31908 KB Output is correct
115 Correct 171 ms 30564 KB Output is correct
116 Correct 191 ms 46628 KB Output is correct
117 Correct 168 ms 29260 KB Output is correct
118 Correct 111 ms 13692 KB Output is correct
119 Correct 50 ms 9300 KB Output is correct
120 Correct 176 ms 30028 KB Output is correct
121 Correct 90 ms 23436 KB Output is correct
122 Correct 77 ms 23472 KB Output is correct
123 Correct 224 ms 30612 KB Output is correct
124 Correct 78 ms 18344 KB Output is correct
125 Correct 94 ms 27060 KB Output is correct
126 Correct 187 ms 30760 KB Output is correct
127 Correct 68 ms 16612 KB Output is correct
128 Correct 102 ms 28344 KB Output is correct
129 Correct 207 ms 32360 KB Output is correct
130 Correct 74 ms 28336 KB Output is correct
131 Correct 99 ms 26128 KB Output is correct
132 Correct 153 ms 28384 KB Output is correct