Submission #987948

# Submission time Handle Problem Language Result Execution time Memory
987948 2024-05-23T19:41:21 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
236 ms 46200 KB
///OWNERUL LUI Calin <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8536 KB Output is correct
2 Correct 5 ms 6492 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8564 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 7 ms 6492 KB Output is correct
9 Correct 4 ms 8112 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 5 ms 5976 KB Output is correct
12 Correct 4 ms 8280 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 6492 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8104 KB Output is correct
19 Correct 4 ms 8500 KB Output is correct
20 Correct 5 ms 5724 KB Output is correct
21 Correct 4 ms 8024 KB Output is correct
22 Correct 4 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8556 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 63 ms 27712 KB Output is correct
2 Correct 89 ms 25892 KB Output is correct
3 Correct 60 ms 24524 KB Output is correct
4 Correct 61 ms 24900 KB Output is correct
5 Correct 53 ms 18364 KB Output is correct
6 Correct 59 ms 17868 KB Output is correct
7 Correct 64 ms 25560 KB Output is correct
8 Correct 59 ms 27212 KB Output is correct
9 Correct 16 ms 8540 KB Output is correct
10 Correct 72 ms 27672 KB Output is correct
11 Correct 13 ms 6488 KB Output is correct
12 Correct 30 ms 9688 KB Output is correct
13 Correct 62 ms 26648 KB Output is correct
14 Correct 76 ms 27824 KB Output is correct
15 Correct 22 ms 8796 KB Output is correct
16 Correct 68 ms 26296 KB Output is correct
17 Correct 65 ms 27036 KB Output is correct
18 Correct 21 ms 9180 KB Output is correct
19 Correct 73 ms 26016 KB Output is correct
20 Correct 56 ms 24420 KB Output is correct
21 Correct 15 ms 8792 KB Output is correct
22 Correct 65 ms 17248 KB Output is correct
23 Correct 60 ms 27060 KB Output is correct
24 Correct 12 ms 8540 KB Output is correct
25 Correct 13 ms 8540 KB Output is correct
26 Correct 48 ms 19128 KB Output is correct
27 Correct 48 ms 18604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8536 KB Output is correct
2 Correct 5 ms 6492 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8564 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 7 ms 6492 KB Output is correct
9 Correct 4 ms 8112 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 5 ms 5976 KB Output is correct
12 Correct 4 ms 8280 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 6492 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8104 KB Output is correct
19 Correct 4 ms 8500 KB Output is correct
20 Correct 5 ms 5724 KB Output is correct
21 Correct 4 ms 8024 KB Output is correct
22 Correct 4 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8556 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 63 ms 27712 KB Output is correct
30 Correct 89 ms 25892 KB Output is correct
31 Correct 60 ms 24524 KB Output is correct
32 Correct 61 ms 24900 KB Output is correct
33 Correct 53 ms 18364 KB Output is correct
34 Correct 59 ms 17868 KB Output is correct
35 Correct 64 ms 25560 KB Output is correct
36 Correct 59 ms 27212 KB Output is correct
37 Correct 16 ms 8540 KB Output is correct
38 Correct 72 ms 27672 KB Output is correct
39 Correct 13 ms 6488 KB Output is correct
40 Correct 30 ms 9688 KB Output is correct
41 Correct 62 ms 26648 KB Output is correct
42 Correct 76 ms 27824 KB Output is correct
43 Correct 22 ms 8796 KB Output is correct
44 Correct 68 ms 26296 KB Output is correct
45 Correct 65 ms 27036 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 73 ms 26016 KB Output is correct
48 Correct 56 ms 24420 KB Output is correct
49 Correct 15 ms 8792 KB Output is correct
50 Correct 65 ms 17248 KB Output is correct
51 Correct 60 ms 27060 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 48 ms 19128 KB Output is correct
55 Correct 48 ms 18604 KB Output is correct
56 Correct 173 ms 32120 KB Output is correct
57 Correct 154 ms 30780 KB Output is correct
58 Correct 154 ms 32244 KB Output is correct
59 Correct 153 ms 29300 KB Output is correct
60 Correct 190 ms 24108 KB Output is correct
61 Correct 140 ms 31728 KB Output is correct
62 Correct 144 ms 28240 KB Output is correct
63 Correct 108 ms 27616 KB Output is correct
64 Correct 54 ms 10764 KB Output is correct
65 Correct 173 ms 31860 KB Output is correct
66 Correct 55 ms 11336 KB Output is correct
67 Correct 51 ms 12256 KB Output is correct
68 Correct 81 ms 28032 KB Output is correct
69 Correct 143 ms 31596 KB Output is correct
70 Correct 23 ms 9052 KB Output is correct
71 Correct 97 ms 24504 KB Output is correct
72 Correct 133 ms 27448 KB Output is correct
73 Correct 15 ms 5764 KB Output is correct
74 Correct 64 ms 15800 KB Output is correct
75 Correct 201 ms 34208 KB Output is correct
76 Correct 14 ms 8708 KB Output is correct
77 Correct 71 ms 19364 KB Output is correct
78 Correct 118 ms 27756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 51 ms 8664 KB Output is correct
2 Correct 46 ms 9492 KB Output is correct
3 Correct 15 ms 8796 KB Output is correct
4 Correct 15 ms 8796 KB Output is correct
5 Correct 195 ms 31540 KB Output is correct
6 Correct 223 ms 29264 KB Output is correct
7 Correct 170 ms 30504 KB Output is correct
8 Correct 187 ms 29200 KB Output is correct
9 Correct 200 ms 30768 KB Output is correct
10 Correct 190 ms 29108 KB Output is correct
11 Correct 179 ms 27676 KB Output is correct
12 Correct 146 ms 29764 KB Output is correct
13 Correct 113 ms 12268 KB Output is correct
14 Correct 206 ms 30512 KB Output is correct
15 Correct 165 ms 30980 KB Output is correct
16 Correct 65 ms 19140 KB Output is correct
17 Correct 85 ms 26436 KB Output is correct
18 Correct 180 ms 30976 KB Output is correct
19 Correct 69 ms 26308 KB Output is correct
20 Correct 99 ms 26304 KB Output is correct
21 Correct 147 ms 30044 KB Output is correct
22 Correct 78 ms 18200 KB Output is correct
23 Correct 76 ms 27068 KB Output is correct
24 Correct 198 ms 31140 KB Output is correct
25 Correct 62 ms 27676 KB Output is correct
26 Correct 59 ms 26492 KB Output is correct
27 Correct 125 ms 29580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8536 KB Output is correct
2 Correct 5 ms 6492 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8540 KB Output is correct
6 Correct 5 ms 8564 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 7 ms 6492 KB Output is correct
9 Correct 4 ms 8112 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 5 ms 5976 KB Output is correct
12 Correct 4 ms 8280 KB Output is correct
13 Correct 4 ms 8536 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 6492 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8104 KB Output is correct
19 Correct 4 ms 8500 KB Output is correct
20 Correct 5 ms 5724 KB Output is correct
21 Correct 4 ms 8024 KB Output is correct
22 Correct 4 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 5 ms 8556 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 63 ms 27712 KB Output is correct
30 Correct 89 ms 25892 KB Output is correct
31 Correct 60 ms 24524 KB Output is correct
32 Correct 61 ms 24900 KB Output is correct
33 Correct 53 ms 18364 KB Output is correct
34 Correct 59 ms 17868 KB Output is correct
35 Correct 64 ms 25560 KB Output is correct
36 Correct 59 ms 27212 KB Output is correct
37 Correct 16 ms 8540 KB Output is correct
38 Correct 72 ms 27672 KB Output is correct
39 Correct 13 ms 6488 KB Output is correct
40 Correct 30 ms 9688 KB Output is correct
41 Correct 62 ms 26648 KB Output is correct
42 Correct 76 ms 27824 KB Output is correct
43 Correct 22 ms 8796 KB Output is correct
44 Correct 68 ms 26296 KB Output is correct
45 Correct 65 ms 27036 KB Output is correct
46 Correct 21 ms 9180 KB Output is correct
47 Correct 73 ms 26016 KB Output is correct
48 Correct 56 ms 24420 KB Output is correct
49 Correct 15 ms 8792 KB Output is correct
50 Correct 65 ms 17248 KB Output is correct
51 Correct 60 ms 27060 KB Output is correct
52 Correct 12 ms 8540 KB Output is correct
53 Correct 13 ms 8540 KB Output is correct
54 Correct 48 ms 19128 KB Output is correct
55 Correct 48 ms 18604 KB Output is correct
56 Correct 173 ms 32120 KB Output is correct
57 Correct 154 ms 30780 KB Output is correct
58 Correct 154 ms 32244 KB Output is correct
59 Correct 153 ms 29300 KB Output is correct
60 Correct 190 ms 24108 KB Output is correct
61 Correct 140 ms 31728 KB Output is correct
62 Correct 144 ms 28240 KB Output is correct
63 Correct 108 ms 27616 KB Output is correct
64 Correct 54 ms 10764 KB Output is correct
65 Correct 173 ms 31860 KB Output is correct
66 Correct 55 ms 11336 KB Output is correct
67 Correct 51 ms 12256 KB Output is correct
68 Correct 81 ms 28032 KB Output is correct
69 Correct 143 ms 31596 KB Output is correct
70 Correct 23 ms 9052 KB Output is correct
71 Correct 97 ms 24504 KB Output is correct
72 Correct 133 ms 27448 KB Output is correct
73 Correct 15 ms 5764 KB Output is correct
74 Correct 64 ms 15800 KB Output is correct
75 Correct 201 ms 34208 KB Output is correct
76 Correct 14 ms 8708 KB Output is correct
77 Correct 71 ms 19364 KB Output is correct
78 Correct 118 ms 27756 KB Output is correct
79 Correct 51 ms 8664 KB Output is correct
80 Correct 46 ms 9492 KB Output is correct
81 Correct 15 ms 8796 KB Output is correct
82 Correct 15 ms 8796 KB Output is correct
83 Correct 195 ms 31540 KB Output is correct
84 Correct 223 ms 29264 KB Output is correct
85 Correct 170 ms 30504 KB Output is correct
86 Correct 187 ms 29200 KB Output is correct
87 Correct 200 ms 30768 KB Output is correct
88 Correct 190 ms 29108 KB Output is correct
89 Correct 179 ms 27676 KB Output is correct
90 Correct 146 ms 29764 KB Output is correct
91 Correct 113 ms 12268 KB Output is correct
92 Correct 206 ms 30512 KB Output is correct
93 Correct 165 ms 30980 KB Output is correct
94 Correct 65 ms 19140 KB Output is correct
95 Correct 85 ms 26436 KB Output is correct
96 Correct 180 ms 30976 KB Output is correct
97 Correct 69 ms 26308 KB Output is correct
98 Correct 99 ms 26304 KB Output is correct
99 Correct 147 ms 30044 KB Output is correct
100 Correct 78 ms 18200 KB Output is correct
101 Correct 76 ms 27068 KB Output is correct
102 Correct 198 ms 31140 KB Output is correct
103 Correct 62 ms 27676 KB Output is correct
104 Correct 59 ms 26492 KB Output is correct
105 Correct 125 ms 29580 KB Output is correct
106 Correct 51 ms 9184 KB Output is correct
107 Correct 52 ms 11004 KB Output is correct
108 Correct 39 ms 9680 KB Output is correct
109 Correct 42 ms 10708 KB Output is correct
110 Correct 183 ms 31652 KB Output is correct
111 Correct 188 ms 31016 KB Output is correct
112 Correct 189 ms 32312 KB Output is correct
113 Correct 166 ms 31092 KB Output is correct
114 Correct 190 ms 32128 KB Output is correct
115 Correct 219 ms 31368 KB Output is correct
116 Correct 189 ms 46200 KB Output is correct
117 Correct 150 ms 28932 KB Output is correct
118 Correct 126 ms 14516 KB Output is correct
119 Correct 57 ms 11228 KB Output is correct
120 Correct 166 ms 30756 KB Output is correct
121 Correct 87 ms 26308 KB Output is correct
122 Correct 82 ms 26468 KB Output is correct
123 Correct 177 ms 30692 KB Output is correct
124 Correct 81 ms 18364 KB Output is correct
125 Correct 106 ms 25700 KB Output is correct
126 Correct 156 ms 30840 KB Output is correct
127 Correct 76 ms 18292 KB Output is correct
128 Correct 107 ms 23608 KB Output is correct
129 Correct 236 ms 32300 KB Output is correct
130 Correct 87 ms 23232 KB Output is correct
131 Correct 82 ms 23992 KB Output is correct
132 Correct 150 ms 30556 KB Output is correct