Submission #987947

# Submission time Handle Problem Language Result Execution time Memory
987947 2024-05-23T19:41:09 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
247 ms 46508 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6492 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 6 ms 6460 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 6 ms 8540 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 6 ms 8536 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8520 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 5 ms 8536 KB Output is correct
17 Correct 6 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 7 ms 5468 KB Output is correct
20 Correct 6 ms 8540 KB Output is correct
21 Correct 4 ms 7964 KB Output is correct
22 Correct 5 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 5 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 67 ms 24716 KB Output is correct
2 Correct 85 ms 25828 KB Output is correct
3 Correct 67 ms 25876 KB Output is correct
4 Correct 68 ms 25728 KB Output is correct
5 Correct 63 ms 18744 KB Output is correct
6 Correct 66 ms 18632 KB Output is correct
7 Correct 61 ms 23736 KB Output is correct
8 Correct 56 ms 25732 KB Output is correct
9 Correct 14 ms 8576 KB Output is correct
10 Correct 60 ms 25900 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 28 ms 9688 KB Output is correct
13 Correct 61 ms 27416 KB Output is correct
14 Correct 64 ms 27836 KB Output is correct
15 Correct 19 ms 8660 KB Output is correct
16 Correct 81 ms 25504 KB Output is correct
17 Correct 66 ms 25756 KB Output is correct
18 Correct 23 ms 9176 KB Output is correct
19 Correct 66 ms 26024 KB Output is correct
20 Correct 64 ms 26680 KB Output is correct
21 Correct 14 ms 8796 KB Output is correct
22 Correct 62 ms 16932 KB Output is correct
23 Correct 65 ms 26028 KB Output is correct
24 Correct 16 ms 8540 KB Output is correct
25 Correct 20 ms 8640 KB Output is correct
26 Correct 48 ms 19076 KB Output is correct
27 Correct 50 ms 19092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6492 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 6 ms 6460 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 6 ms 8540 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 6 ms 8536 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8520 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 5 ms 8536 KB Output is correct
17 Correct 6 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 7 ms 5468 KB Output is correct
20 Correct 6 ms 8540 KB Output is correct
21 Correct 4 ms 7964 KB Output is correct
22 Correct 5 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 5 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 67 ms 24716 KB Output is correct
30 Correct 85 ms 25828 KB Output is correct
31 Correct 67 ms 25876 KB Output is correct
32 Correct 68 ms 25728 KB Output is correct
33 Correct 63 ms 18744 KB Output is correct
34 Correct 66 ms 18632 KB Output is correct
35 Correct 61 ms 23736 KB Output is correct
36 Correct 56 ms 25732 KB Output is correct
37 Correct 14 ms 8576 KB Output is correct
38 Correct 60 ms 25900 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 28 ms 9688 KB Output is correct
41 Correct 61 ms 27416 KB Output is correct
42 Correct 64 ms 27836 KB Output is correct
43 Correct 19 ms 8660 KB Output is correct
44 Correct 81 ms 25504 KB Output is correct
45 Correct 66 ms 25756 KB Output is correct
46 Correct 23 ms 9176 KB Output is correct
47 Correct 66 ms 26024 KB Output is correct
48 Correct 64 ms 26680 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 62 ms 16932 KB Output is correct
51 Correct 65 ms 26028 KB Output is correct
52 Correct 16 ms 8540 KB Output is correct
53 Correct 20 ms 8640 KB Output is correct
54 Correct 48 ms 19076 KB Output is correct
55 Correct 50 ms 19092 KB Output is correct
56 Correct 152 ms 33996 KB Output is correct
57 Correct 184 ms 29920 KB Output is correct
58 Correct 174 ms 30688 KB Output is correct
59 Correct 131 ms 28208 KB Output is correct
60 Correct 131 ms 23036 KB Output is correct
61 Correct 131 ms 29496 KB Output is correct
62 Correct 148 ms 29224 KB Output is correct
63 Correct 107 ms 25592 KB Output is correct
64 Correct 81 ms 10796 KB Output is correct
65 Correct 143 ms 32068 KB Output is correct
66 Correct 65 ms 11348 KB Output is correct
67 Correct 59 ms 12108 KB Output is correct
68 Correct 99 ms 26280 KB Output is correct
69 Correct 180 ms 30456 KB Output is correct
70 Correct 17 ms 8964 KB Output is correct
71 Correct 81 ms 24432 KB Output is correct
72 Correct 133 ms 29772 KB Output is correct
73 Correct 17 ms 6536 KB Output is correct
74 Correct 93 ms 18608 KB Output is correct
75 Correct 166 ms 32040 KB Output is correct
76 Correct 14 ms 8544 KB Output is correct
77 Correct 75 ms 17296 KB Output is correct
78 Correct 108 ms 28084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 47 ms 10556 KB Output is correct
2 Correct 40 ms 9432 KB Output is correct
3 Correct 22 ms 8684 KB Output is correct
4 Correct 15 ms 8932 KB Output is correct
5 Correct 152 ms 31104 KB Output is correct
6 Correct 155 ms 31216 KB Output is correct
7 Correct 202 ms 31164 KB Output is correct
8 Correct 169 ms 29352 KB Output is correct
9 Correct 169 ms 31348 KB Output is correct
10 Correct 169 ms 29184 KB Output is correct
11 Correct 138 ms 28476 KB Output is correct
12 Correct 118 ms 30552 KB Output is correct
13 Correct 104 ms 12720 KB Output is correct
14 Correct 183 ms 29872 KB Output is correct
15 Correct 173 ms 29664 KB Output is correct
16 Correct 69 ms 17872 KB Output is correct
17 Correct 74 ms 27848 KB Output is correct
18 Correct 176 ms 30728 KB Output is correct
19 Correct 68 ms 26816 KB Output is correct
20 Correct 72 ms 25568 KB Output is correct
21 Correct 174 ms 28564 KB Output is correct
22 Correct 73 ms 17800 KB Output is correct
23 Correct 75 ms 26912 KB Output is correct
24 Correct 180 ms 32880 KB Output is correct
25 Correct 67 ms 26500 KB Output is correct
26 Correct 61 ms 26232 KB Output is correct
27 Correct 131 ms 29832 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 6492 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 6 ms 6460 KB Output is correct
4 Correct 5 ms 8536 KB Output is correct
5 Correct 6 ms 8540 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 6 ms 8540 KB Output is correct
8 Correct 6 ms 8536 KB Output is correct
9 Correct 4 ms 8028 KB Output is correct
10 Correct 5 ms 8540 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 8284 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 8520 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 5 ms 8536 KB Output is correct
17 Correct 6 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 7 ms 5468 KB Output is correct
20 Correct 6 ms 8540 KB Output is correct
21 Correct 4 ms 7964 KB Output is correct
22 Correct 5 ms 8536 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8284 KB Output is correct
25 Correct 5 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 5 ms 8540 KB Output is correct
29 Correct 67 ms 24716 KB Output is correct
30 Correct 85 ms 25828 KB Output is correct
31 Correct 67 ms 25876 KB Output is correct
32 Correct 68 ms 25728 KB Output is correct
33 Correct 63 ms 18744 KB Output is correct
34 Correct 66 ms 18632 KB Output is correct
35 Correct 61 ms 23736 KB Output is correct
36 Correct 56 ms 25732 KB Output is correct
37 Correct 14 ms 8576 KB Output is correct
38 Correct 60 ms 25900 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 28 ms 9688 KB Output is correct
41 Correct 61 ms 27416 KB Output is correct
42 Correct 64 ms 27836 KB Output is correct
43 Correct 19 ms 8660 KB Output is correct
44 Correct 81 ms 25504 KB Output is correct
45 Correct 66 ms 25756 KB Output is correct
46 Correct 23 ms 9176 KB Output is correct
47 Correct 66 ms 26024 KB Output is correct
48 Correct 64 ms 26680 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 62 ms 16932 KB Output is correct
51 Correct 65 ms 26028 KB Output is correct
52 Correct 16 ms 8540 KB Output is correct
53 Correct 20 ms 8640 KB Output is correct
54 Correct 48 ms 19076 KB Output is correct
55 Correct 50 ms 19092 KB Output is correct
56 Correct 152 ms 33996 KB Output is correct
57 Correct 184 ms 29920 KB Output is correct
58 Correct 174 ms 30688 KB Output is correct
59 Correct 131 ms 28208 KB Output is correct
60 Correct 131 ms 23036 KB Output is correct
61 Correct 131 ms 29496 KB Output is correct
62 Correct 148 ms 29224 KB Output is correct
63 Correct 107 ms 25592 KB Output is correct
64 Correct 81 ms 10796 KB Output is correct
65 Correct 143 ms 32068 KB Output is correct
66 Correct 65 ms 11348 KB Output is correct
67 Correct 59 ms 12108 KB Output is correct
68 Correct 99 ms 26280 KB Output is correct
69 Correct 180 ms 30456 KB Output is correct
70 Correct 17 ms 8964 KB Output is correct
71 Correct 81 ms 24432 KB Output is correct
72 Correct 133 ms 29772 KB Output is correct
73 Correct 17 ms 6536 KB Output is correct
74 Correct 93 ms 18608 KB Output is correct
75 Correct 166 ms 32040 KB Output is correct
76 Correct 14 ms 8544 KB Output is correct
77 Correct 75 ms 17296 KB Output is correct
78 Correct 108 ms 28084 KB Output is correct
79 Correct 47 ms 10556 KB Output is correct
80 Correct 40 ms 9432 KB Output is correct
81 Correct 22 ms 8684 KB Output is correct
82 Correct 15 ms 8932 KB Output is correct
83 Correct 152 ms 31104 KB Output is correct
84 Correct 155 ms 31216 KB Output is correct
85 Correct 202 ms 31164 KB Output is correct
86 Correct 169 ms 29352 KB Output is correct
87 Correct 169 ms 31348 KB Output is correct
88 Correct 169 ms 29184 KB Output is correct
89 Correct 138 ms 28476 KB Output is correct
90 Correct 118 ms 30552 KB Output is correct
91 Correct 104 ms 12720 KB Output is correct
92 Correct 183 ms 29872 KB Output is correct
93 Correct 173 ms 29664 KB Output is correct
94 Correct 69 ms 17872 KB Output is correct
95 Correct 74 ms 27848 KB Output is correct
96 Correct 176 ms 30728 KB Output is correct
97 Correct 68 ms 26816 KB Output is correct
98 Correct 72 ms 25568 KB Output is correct
99 Correct 174 ms 28564 KB Output is correct
100 Correct 73 ms 17800 KB Output is correct
101 Correct 75 ms 26912 KB Output is correct
102 Correct 180 ms 32880 KB Output is correct
103 Correct 67 ms 26500 KB Output is correct
104 Correct 61 ms 26232 KB Output is correct
105 Correct 131 ms 29832 KB Output is correct
106 Correct 42 ms 9384 KB Output is correct
107 Correct 43 ms 10872 KB Output is correct
108 Correct 39 ms 9868 KB Output is correct
109 Correct 46 ms 10700 KB Output is correct
110 Correct 182 ms 32680 KB Output is correct
111 Correct 186 ms 31032 KB Output is correct
112 Correct 245 ms 30760 KB Output is correct
113 Correct 170 ms 29572 KB Output is correct
114 Correct 247 ms 31984 KB Output is correct
115 Correct 221 ms 31660 KB Output is correct
116 Correct 185 ms 46508 KB Output is correct
117 Correct 166 ms 29324 KB Output is correct
118 Correct 140 ms 14292 KB Output is correct
119 Correct 82 ms 11272 KB Output is correct
120 Correct 204 ms 31032 KB Output is correct
121 Correct 92 ms 26472 KB Output is correct
122 Correct 110 ms 27184 KB Output is correct
123 Correct 224 ms 31416 KB Output is correct
124 Correct 75 ms 18424 KB Output is correct
125 Correct 114 ms 26812 KB Output is correct
126 Correct 184 ms 30544 KB Output is correct
127 Correct 88 ms 18528 KB Output is correct
128 Correct 90 ms 28344 KB Output is correct
129 Correct 166 ms 33584 KB Output is correct
130 Correct 87 ms 26260 KB Output is correct
131 Correct 123 ms 26260 KB Output is correct
132 Correct 161 ms 30008 KB Output is correct