Submission #987946

# Submission time Handle Problem Language Result Execution time Memory
987946 2024-05-23T19:40:52 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++14
25 / 25
219 ms 46244 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8536 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 6 ms 5592 KB Output is correct
5 Correct 6 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 5 ms 8536 KB Output is correct
8 Correct 5 ms 6492 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 6 ms 8540 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 4 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 6532 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 4 ms 5552 KB Output is correct
17 Correct 6 ms 8576 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 5 ms 8028 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 5212 KB Output is correct
25 Correct 4 ms 8280 KB Output is correct
26 Correct 7 ms 8604 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 4 ms 8392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 63 ms 24396 KB Output is correct
2 Correct 65 ms 25920 KB Output is correct
3 Correct 71 ms 26540 KB Output is correct
4 Correct 61 ms 26560 KB Output is correct
5 Correct 56 ms 18888 KB Output is correct
6 Correct 57 ms 18120 KB Output is correct
7 Correct 68 ms 26808 KB Output is correct
8 Correct 85 ms 25556 KB Output is correct
9 Correct 14 ms 6488 KB Output is correct
10 Correct 81 ms 25732 KB Output is correct
11 Correct 14 ms 8728 KB Output is correct
12 Correct 30 ms 9688 KB Output is correct
13 Correct 73 ms 26900 KB Output is correct
14 Correct 63 ms 26244 KB Output is correct
15 Correct 16 ms 8740 KB Output is correct
16 Correct 88 ms 25508 KB Output is correct
17 Correct 76 ms 25852 KB Output is correct
18 Correct 26 ms 9180 KB Output is correct
19 Correct 67 ms 25952 KB Output is correct
20 Correct 62 ms 26264 KB Output is correct
21 Correct 15 ms 8788 KB Output is correct
22 Correct 61 ms 18384 KB Output is correct
23 Correct 57 ms 27056 KB Output is correct
24 Correct 18 ms 8540 KB Output is correct
25 Correct 19 ms 8556 KB Output is correct
26 Correct 51 ms 17084 KB Output is correct
27 Correct 52 ms 18280 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8536 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 6 ms 5592 KB Output is correct
5 Correct 6 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 5 ms 8536 KB Output is correct
8 Correct 5 ms 6492 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 6 ms 8540 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 4 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 6532 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 4 ms 5552 KB Output is correct
17 Correct 6 ms 8576 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 5 ms 8028 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 5212 KB Output is correct
25 Correct 4 ms 8280 KB Output is correct
26 Correct 7 ms 8604 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 4 ms 8392 KB Output is correct
29 Correct 63 ms 24396 KB Output is correct
30 Correct 65 ms 25920 KB Output is correct
31 Correct 71 ms 26540 KB Output is correct
32 Correct 61 ms 26560 KB Output is correct
33 Correct 56 ms 18888 KB Output is correct
34 Correct 57 ms 18120 KB Output is correct
35 Correct 68 ms 26808 KB Output is correct
36 Correct 85 ms 25556 KB Output is correct
37 Correct 14 ms 6488 KB Output is correct
38 Correct 81 ms 25732 KB Output is correct
39 Correct 14 ms 8728 KB Output is correct
40 Correct 30 ms 9688 KB Output is correct
41 Correct 73 ms 26900 KB Output is correct
42 Correct 63 ms 26244 KB Output is correct
43 Correct 16 ms 8740 KB Output is correct
44 Correct 88 ms 25508 KB Output is correct
45 Correct 76 ms 25852 KB Output is correct
46 Correct 26 ms 9180 KB Output is correct
47 Correct 67 ms 25952 KB Output is correct
48 Correct 62 ms 26264 KB Output is correct
49 Correct 15 ms 8788 KB Output is correct
50 Correct 61 ms 18384 KB Output is correct
51 Correct 57 ms 27056 KB Output is correct
52 Correct 18 ms 8540 KB Output is correct
53 Correct 19 ms 8556 KB Output is correct
54 Correct 51 ms 17084 KB Output is correct
55 Correct 52 ms 18280 KB Output is correct
56 Correct 139 ms 33940 KB Output is correct
57 Correct 155 ms 30532 KB Output is correct
58 Correct 188 ms 31040 KB Output is correct
59 Correct 134 ms 29132 KB Output is correct
60 Correct 171 ms 24200 KB Output is correct
61 Correct 161 ms 29616 KB Output is correct
62 Correct 130 ms 28244 KB Output is correct
63 Correct 141 ms 26600 KB Output is correct
64 Correct 69 ms 10808 KB Output is correct
65 Correct 132 ms 31168 KB Output is correct
66 Correct 68 ms 11400 KB Output is correct
67 Correct 50 ms 12236 KB Output is correct
68 Correct 83 ms 26996 KB Output is correct
69 Correct 130 ms 32312 KB Output is correct
70 Correct 24 ms 9048 KB Output is correct
71 Correct 79 ms 27660 KB Output is correct
72 Correct 119 ms 30268 KB Output is correct
73 Correct 14 ms 8796 KB Output is correct
74 Correct 68 ms 18620 KB Output is correct
75 Correct 179 ms 32476 KB Output is correct
76 Correct 14 ms 8552 KB Output is correct
77 Correct 60 ms 17600 KB Output is correct
78 Correct 141 ms 25264 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 10712 KB Output is correct
2 Correct 50 ms 7480 KB Output is correct
3 Correct 17 ms 6748 KB Output is correct
4 Correct 23 ms 5936 KB Output is correct
5 Correct 182 ms 30680 KB Output is correct
6 Correct 169 ms 29240 KB Output is correct
7 Correct 192 ms 29840 KB Output is correct
8 Correct 185 ms 28788 KB Output is correct
9 Correct 195 ms 32104 KB Output is correct
10 Correct 181 ms 30124 KB Output is correct
11 Correct 166 ms 28688 KB Output is correct
12 Correct 156 ms 28648 KB Output is correct
13 Correct 115 ms 12316 KB Output is correct
14 Correct 171 ms 29356 KB Output is correct
15 Correct 168 ms 31040 KB Output is correct
16 Correct 90 ms 17756 KB Output is correct
17 Correct 95 ms 25896 KB Output is correct
18 Correct 169 ms 30980 KB Output is correct
19 Correct 81 ms 27116 KB Output is correct
20 Correct 96 ms 26564 KB Output is correct
21 Correct 178 ms 28576 KB Output is correct
22 Correct 80 ms 17884 KB Output is correct
23 Correct 90 ms 27576 KB Output is correct
24 Correct 219 ms 31536 KB Output is correct
25 Correct 82 ms 26444 KB Output is correct
26 Correct 68 ms 26296 KB Output is correct
27 Correct 162 ms 29464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8540 KB Output is correct
2 Correct 6 ms 8536 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 6 ms 5592 KB Output is correct
5 Correct 6 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 5 ms 8536 KB Output is correct
8 Correct 5 ms 6492 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 6 ms 8540 KB Output is correct
11 Correct 4 ms 5980 KB Output is correct
12 Correct 4 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 5 ms 6532 KB Output is correct
15 Correct 4 ms 6236 KB Output is correct
16 Correct 4 ms 5552 KB Output is correct
17 Correct 6 ms 8576 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8536 KB Output is correct
21 Correct 5 ms 8028 KB Output is correct
22 Correct 5 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 5212 KB Output is correct
25 Correct 4 ms 8280 KB Output is correct
26 Correct 7 ms 8604 KB Output is correct
27 Correct 6 ms 8540 KB Output is correct
28 Correct 4 ms 8392 KB Output is correct
29 Correct 63 ms 24396 KB Output is correct
30 Correct 65 ms 25920 KB Output is correct
31 Correct 71 ms 26540 KB Output is correct
32 Correct 61 ms 26560 KB Output is correct
33 Correct 56 ms 18888 KB Output is correct
34 Correct 57 ms 18120 KB Output is correct
35 Correct 68 ms 26808 KB Output is correct
36 Correct 85 ms 25556 KB Output is correct
37 Correct 14 ms 6488 KB Output is correct
38 Correct 81 ms 25732 KB Output is correct
39 Correct 14 ms 8728 KB Output is correct
40 Correct 30 ms 9688 KB Output is correct
41 Correct 73 ms 26900 KB Output is correct
42 Correct 63 ms 26244 KB Output is correct
43 Correct 16 ms 8740 KB Output is correct
44 Correct 88 ms 25508 KB Output is correct
45 Correct 76 ms 25852 KB Output is correct
46 Correct 26 ms 9180 KB Output is correct
47 Correct 67 ms 25952 KB Output is correct
48 Correct 62 ms 26264 KB Output is correct
49 Correct 15 ms 8788 KB Output is correct
50 Correct 61 ms 18384 KB Output is correct
51 Correct 57 ms 27056 KB Output is correct
52 Correct 18 ms 8540 KB Output is correct
53 Correct 19 ms 8556 KB Output is correct
54 Correct 51 ms 17084 KB Output is correct
55 Correct 52 ms 18280 KB Output is correct
56 Correct 139 ms 33940 KB Output is correct
57 Correct 155 ms 30532 KB Output is correct
58 Correct 188 ms 31040 KB Output is correct
59 Correct 134 ms 29132 KB Output is correct
60 Correct 171 ms 24200 KB Output is correct
61 Correct 161 ms 29616 KB Output is correct
62 Correct 130 ms 28244 KB Output is correct
63 Correct 141 ms 26600 KB Output is correct
64 Correct 69 ms 10808 KB Output is correct
65 Correct 132 ms 31168 KB Output is correct
66 Correct 68 ms 11400 KB Output is correct
67 Correct 50 ms 12236 KB Output is correct
68 Correct 83 ms 26996 KB Output is correct
69 Correct 130 ms 32312 KB Output is correct
70 Correct 24 ms 9048 KB Output is correct
71 Correct 79 ms 27660 KB Output is correct
72 Correct 119 ms 30268 KB Output is correct
73 Correct 14 ms 8796 KB Output is correct
74 Correct 68 ms 18620 KB Output is correct
75 Correct 179 ms 32476 KB Output is correct
76 Correct 14 ms 8552 KB Output is correct
77 Correct 60 ms 17600 KB Output is correct
78 Correct 141 ms 25264 KB Output is correct
79 Correct 41 ms 10712 KB Output is correct
80 Correct 50 ms 7480 KB Output is correct
81 Correct 17 ms 6748 KB Output is correct
82 Correct 23 ms 5936 KB Output is correct
83 Correct 182 ms 30680 KB Output is correct
84 Correct 169 ms 29240 KB Output is correct
85 Correct 192 ms 29840 KB Output is correct
86 Correct 185 ms 28788 KB Output is correct
87 Correct 195 ms 32104 KB Output is correct
88 Correct 181 ms 30124 KB Output is correct
89 Correct 166 ms 28688 KB Output is correct
90 Correct 156 ms 28648 KB Output is correct
91 Correct 115 ms 12316 KB Output is correct
92 Correct 171 ms 29356 KB Output is correct
93 Correct 168 ms 31040 KB Output is correct
94 Correct 90 ms 17756 KB Output is correct
95 Correct 95 ms 25896 KB Output is correct
96 Correct 169 ms 30980 KB Output is correct
97 Correct 81 ms 27116 KB Output is correct
98 Correct 96 ms 26564 KB Output is correct
99 Correct 178 ms 28576 KB Output is correct
100 Correct 80 ms 17884 KB Output is correct
101 Correct 90 ms 27576 KB Output is correct
102 Correct 219 ms 31536 KB Output is correct
103 Correct 82 ms 26444 KB Output is correct
104 Correct 68 ms 26296 KB Output is correct
105 Correct 162 ms 29464 KB Output is correct
106 Correct 37 ms 9352 KB Output is correct
107 Correct 50 ms 11016 KB Output is correct
108 Correct 40 ms 9860 KB Output is correct
109 Correct 44 ms 10728 KB Output is correct
110 Correct 175 ms 32112 KB Output is correct
111 Correct 203 ms 31504 KB Output is correct
112 Correct 197 ms 31852 KB Output is correct
113 Correct 161 ms 31412 KB Output is correct
114 Correct 190 ms 32428 KB Output is correct
115 Correct 210 ms 30232 KB Output is correct
116 Correct 178 ms 46244 KB Output is correct
117 Correct 159 ms 28476 KB Output is correct
118 Correct 134 ms 13652 KB Output is correct
119 Correct 64 ms 11340 KB Output is correct
120 Correct 194 ms 31252 KB Output is correct
121 Correct 77 ms 27272 KB Output is correct
122 Correct 90 ms 27048 KB Output is correct
123 Correct 190 ms 31816 KB Output is correct
124 Correct 73 ms 18348 KB Output is correct
125 Correct 120 ms 27540 KB Output is correct
126 Correct 198 ms 31112 KB Output is correct
127 Correct 65 ms 17540 KB Output is correct
128 Correct 86 ms 28100 KB Output is correct
129 Correct 199 ms 32736 KB Output is correct
130 Correct 83 ms 27008 KB Output is correct
131 Correct 103 ms 26036 KB Output is correct
132 Correct 178 ms 28360 KB Output is correct