Submission #987935

# Submission time Handle Problem Language Result Execution time Memory
987935 2024-05-23T19:38:30 Z activedeltorre Shopping Plans (CCO20_day2problem3) C++11
25 / 25
220 ms 46224 KB
///OWNERUL LUI ADI <3
#include <bits/stdc++.h>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:8:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:8:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:8:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:8:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:8:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
    8 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],i
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5720 KB Output is correct
2 Correct 7 ms 5592 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8568 KB Output is correct
6 Correct 5 ms 6492 KB Output is correct
7 Correct 6 ms 8536 KB Output is correct
8 Correct 4 ms 6492 KB Output is correct
9 Correct 5 ms 5212 KB Output is correct
10 Correct 5 ms 8536 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 7256 KB Output is correct
13 Correct 4 ms 6492 KB Output is correct
14 Correct 6 ms 6492 KB Output is correct
15 Correct 5 ms 8284 KB Output is correct
16 Correct 5 ms 6492 KB Output is correct
17 Correct 7 ms 5640 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 8540 KB Output is correct
21 Correct 4 ms 5980 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 6 ms 8540 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6236 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 6 ms 8796 KB Output is correct
28 Correct 4 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 81 ms 26224 KB Output is correct
2 Correct 70 ms 24492 KB Output is correct
3 Correct 107 ms 25772 KB Output is correct
4 Correct 62 ms 24140 KB Output is correct
5 Correct 59 ms 17620 KB Output is correct
6 Correct 63 ms 17372 KB Output is correct
7 Correct 65 ms 23576 KB Output is correct
8 Correct 62 ms 23448 KB Output is correct
9 Correct 18 ms 6500 KB Output is correct
10 Correct 81 ms 24772 KB Output is correct
11 Correct 13 ms 5724 KB Output is correct
12 Correct 29 ms 9588 KB Output is correct
13 Correct 80 ms 25528 KB Output is correct
14 Correct 68 ms 25952 KB Output is correct
15 Correct 14 ms 6140 KB Output is correct
16 Correct 84 ms 23584 KB Output is correct
17 Correct 66 ms 23728 KB Output is correct
18 Correct 25 ms 7124 KB Output is correct
19 Correct 77 ms 23916 KB Output is correct
20 Correct 75 ms 27692 KB Output is correct
21 Correct 14 ms 8792 KB Output is correct
22 Correct 78 ms 16948 KB Output is correct
23 Correct 67 ms 26800 KB Output is correct
24 Correct 13 ms 8540 KB Output is correct
25 Correct 16 ms 8536 KB Output is correct
26 Correct 59 ms 17464 KB Output is correct
27 Correct 61 ms 17488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5720 KB Output is correct
2 Correct 7 ms 5592 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8568 KB Output is correct
6 Correct 5 ms 6492 KB Output is correct
7 Correct 6 ms 8536 KB Output is correct
8 Correct 4 ms 6492 KB Output is correct
9 Correct 5 ms 5212 KB Output is correct
10 Correct 5 ms 8536 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 7256 KB Output is correct
13 Correct 4 ms 6492 KB Output is correct
14 Correct 6 ms 6492 KB Output is correct
15 Correct 5 ms 8284 KB Output is correct
16 Correct 5 ms 6492 KB Output is correct
17 Correct 7 ms 5640 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 8540 KB Output is correct
21 Correct 4 ms 5980 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 6 ms 8540 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6236 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 6 ms 8796 KB Output is correct
28 Correct 4 ms 6492 KB Output is correct
29 Correct 81 ms 26224 KB Output is correct
30 Correct 70 ms 24492 KB Output is correct
31 Correct 107 ms 25772 KB Output is correct
32 Correct 62 ms 24140 KB Output is correct
33 Correct 59 ms 17620 KB Output is correct
34 Correct 63 ms 17372 KB Output is correct
35 Correct 65 ms 23576 KB Output is correct
36 Correct 62 ms 23448 KB Output is correct
37 Correct 18 ms 6500 KB Output is correct
38 Correct 81 ms 24772 KB Output is correct
39 Correct 13 ms 5724 KB Output is correct
40 Correct 29 ms 9588 KB Output is correct
41 Correct 80 ms 25528 KB Output is correct
42 Correct 68 ms 25952 KB Output is correct
43 Correct 14 ms 6140 KB Output is correct
44 Correct 84 ms 23584 KB Output is correct
45 Correct 66 ms 23728 KB Output is correct
46 Correct 25 ms 7124 KB Output is correct
47 Correct 77 ms 23916 KB Output is correct
48 Correct 75 ms 27692 KB Output is correct
49 Correct 14 ms 8792 KB Output is correct
50 Correct 78 ms 16948 KB Output is correct
51 Correct 67 ms 26800 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 16 ms 8536 KB Output is correct
54 Correct 59 ms 17464 KB Output is correct
55 Correct 61 ms 17488 KB Output is correct
56 Correct 174 ms 32820 KB Output is correct
57 Correct 143 ms 28724 KB Output is correct
58 Correct 133 ms 30800 KB Output is correct
59 Correct 139 ms 27584 KB Output is correct
60 Correct 155 ms 24320 KB Output is correct
61 Correct 209 ms 31796 KB Output is correct
62 Correct 131 ms 28116 KB Output is correct
63 Correct 116 ms 25872 KB Output is correct
64 Correct 56 ms 9164 KB Output is correct
65 Correct 153 ms 30380 KB Output is correct
66 Correct 56 ms 10324 KB Output is correct
67 Correct 54 ms 9160 KB Output is correct
68 Correct 97 ms 23708 KB Output is correct
69 Correct 177 ms 31020 KB Output is correct
70 Correct 15 ms 5980 KB Output is correct
71 Correct 79 ms 23476 KB Output is correct
72 Correct 149 ms 28768 KB Output is correct
73 Correct 15 ms 5724 KB Output is correct
74 Correct 81 ms 15840 KB Output is correct
75 Correct 180 ms 33704 KB Output is correct
76 Correct 17 ms 5724 KB Output is correct
77 Correct 62 ms 14520 KB Output is correct
78 Correct 114 ms 25332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 51 ms 7848 KB Output is correct
2 Correct 37 ms 6608 KB Output is correct
3 Correct 15 ms 5724 KB Output is correct
4 Correct 15 ms 5980 KB Output is correct
5 Correct 195 ms 33184 KB Output is correct
6 Correct 191 ms 31544 KB Output is correct
7 Correct 156 ms 32040 KB Output is correct
8 Correct 184 ms 31324 KB Output is correct
9 Correct 159 ms 33072 KB Output is correct
10 Correct 202 ms 31672 KB Output is correct
11 Correct 187 ms 29932 KB Output is correct
12 Correct 136 ms 30104 KB Output is correct
13 Correct 114 ms 14144 KB Output is correct
14 Correct 166 ms 31648 KB Output is correct
15 Correct 156 ms 31648 KB Output is correct
16 Correct 75 ms 14824 KB Output is correct
17 Correct 85 ms 23076 KB Output is correct
18 Correct 181 ms 29600 KB Output is correct
19 Correct 75 ms 23220 KB Output is correct
20 Correct 92 ms 22964 KB Output is correct
21 Correct 164 ms 28732 KB Output is correct
22 Correct 84 ms 19200 KB Output is correct
23 Correct 73 ms 27576 KB Output is correct
24 Correct 182 ms 30640 KB Output is correct
25 Correct 69 ms 24580 KB Output is correct
26 Correct 74 ms 25028 KB Output is correct
27 Correct 139 ms 28396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5720 KB Output is correct
2 Correct 7 ms 5592 KB Output is correct
3 Correct 5 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 5 ms 8568 KB Output is correct
6 Correct 5 ms 6492 KB Output is correct
7 Correct 6 ms 8536 KB Output is correct
8 Correct 4 ms 6492 KB Output is correct
9 Correct 5 ms 5212 KB Output is correct
10 Correct 5 ms 8536 KB Output is correct
11 Correct 4 ms 8028 KB Output is correct
12 Correct 4 ms 7256 KB Output is correct
13 Correct 4 ms 6492 KB Output is correct
14 Correct 6 ms 6492 KB Output is correct
15 Correct 5 ms 8284 KB Output is correct
16 Correct 5 ms 6492 KB Output is correct
17 Correct 7 ms 5640 KB Output is correct
18 Correct 3 ms 6236 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 7 ms 8540 KB Output is correct
21 Correct 4 ms 5980 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 6 ms 8540 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6236 KB Output is correct
26 Correct 5 ms 8540 KB Output is correct
27 Correct 6 ms 8796 KB Output is correct
28 Correct 4 ms 6492 KB Output is correct
29 Correct 81 ms 26224 KB Output is correct
30 Correct 70 ms 24492 KB Output is correct
31 Correct 107 ms 25772 KB Output is correct
32 Correct 62 ms 24140 KB Output is correct
33 Correct 59 ms 17620 KB Output is correct
34 Correct 63 ms 17372 KB Output is correct
35 Correct 65 ms 23576 KB Output is correct
36 Correct 62 ms 23448 KB Output is correct
37 Correct 18 ms 6500 KB Output is correct
38 Correct 81 ms 24772 KB Output is correct
39 Correct 13 ms 5724 KB Output is correct
40 Correct 29 ms 9588 KB Output is correct
41 Correct 80 ms 25528 KB Output is correct
42 Correct 68 ms 25952 KB Output is correct
43 Correct 14 ms 6140 KB Output is correct
44 Correct 84 ms 23584 KB Output is correct
45 Correct 66 ms 23728 KB Output is correct
46 Correct 25 ms 7124 KB Output is correct
47 Correct 77 ms 23916 KB Output is correct
48 Correct 75 ms 27692 KB Output is correct
49 Correct 14 ms 8792 KB Output is correct
50 Correct 78 ms 16948 KB Output is correct
51 Correct 67 ms 26800 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 16 ms 8536 KB Output is correct
54 Correct 59 ms 17464 KB Output is correct
55 Correct 61 ms 17488 KB Output is correct
56 Correct 174 ms 32820 KB Output is correct
57 Correct 143 ms 28724 KB Output is correct
58 Correct 133 ms 30800 KB Output is correct
59 Correct 139 ms 27584 KB Output is correct
60 Correct 155 ms 24320 KB Output is correct
61 Correct 209 ms 31796 KB Output is correct
62 Correct 131 ms 28116 KB Output is correct
63 Correct 116 ms 25872 KB Output is correct
64 Correct 56 ms 9164 KB Output is correct
65 Correct 153 ms 30380 KB Output is correct
66 Correct 56 ms 10324 KB Output is correct
67 Correct 54 ms 9160 KB Output is correct
68 Correct 97 ms 23708 KB Output is correct
69 Correct 177 ms 31020 KB Output is correct
70 Correct 15 ms 5980 KB Output is correct
71 Correct 79 ms 23476 KB Output is correct
72 Correct 149 ms 28768 KB Output is correct
73 Correct 15 ms 5724 KB Output is correct
74 Correct 81 ms 15840 KB Output is correct
75 Correct 180 ms 33704 KB Output is correct
76 Correct 17 ms 5724 KB Output is correct
77 Correct 62 ms 14520 KB Output is correct
78 Correct 114 ms 25332 KB Output is correct
79 Correct 51 ms 7848 KB Output is correct
80 Correct 37 ms 6608 KB Output is correct
81 Correct 15 ms 5724 KB Output is correct
82 Correct 15 ms 5980 KB Output is correct
83 Correct 195 ms 33184 KB Output is correct
84 Correct 191 ms 31544 KB Output is correct
85 Correct 156 ms 32040 KB Output is correct
86 Correct 184 ms 31324 KB Output is correct
87 Correct 159 ms 33072 KB Output is correct
88 Correct 202 ms 31672 KB Output is correct
89 Correct 187 ms 29932 KB Output is correct
90 Correct 136 ms 30104 KB Output is correct
91 Correct 114 ms 14144 KB Output is correct
92 Correct 166 ms 31648 KB Output is correct
93 Correct 156 ms 31648 KB Output is correct
94 Correct 75 ms 14824 KB Output is correct
95 Correct 85 ms 23076 KB Output is correct
96 Correct 181 ms 29600 KB Output is correct
97 Correct 75 ms 23220 KB Output is correct
98 Correct 92 ms 22964 KB Output is correct
99 Correct 164 ms 28732 KB Output is correct
100 Correct 84 ms 19200 KB Output is correct
101 Correct 73 ms 27576 KB Output is correct
102 Correct 182 ms 30640 KB Output is correct
103 Correct 69 ms 24580 KB Output is correct
104 Correct 74 ms 25028 KB Output is correct
105 Correct 139 ms 28396 KB Output is correct
106 Correct 37 ms 9356 KB Output is correct
107 Correct 45 ms 7920 KB Output is correct
108 Correct 43 ms 6984 KB Output is correct
109 Correct 48 ms 7880 KB Output is correct
110 Correct 198 ms 31620 KB Output is correct
111 Correct 203 ms 30572 KB Output is correct
112 Correct 194 ms 30628 KB Output is correct
113 Correct 194 ms 30668 KB Output is correct
114 Correct 220 ms 31800 KB Output is correct
115 Correct 209 ms 30268 KB Output is correct
116 Correct 210 ms 46224 KB Output is correct
117 Correct 173 ms 29336 KB Output is correct
118 Correct 111 ms 13560 KB Output is correct
119 Correct 74 ms 11492 KB Output is correct
120 Correct 206 ms 30028 KB Output is correct
121 Correct 99 ms 28040 KB Output is correct
122 Correct 79 ms 24236 KB Output is correct
123 Correct 184 ms 30748 KB Output is correct
124 Correct 78 ms 16304 KB Output is correct
125 Correct 96 ms 24032 KB Output is correct
126 Correct 189 ms 29932 KB Output is correct
127 Correct 64 ms 17636 KB Output is correct
128 Correct 83 ms 26544 KB Output is correct
129 Correct 182 ms 32492 KB Output is correct
130 Correct 80 ms 24292 KB Output is correct
131 Correct 82 ms 24196 KB Output is correct
132 Correct 177 ms 27772 KB Output is correct