Submission #987926

# Submission time Handle Problem Language Result Execution time Memory
987926 2024-05-23T19:31:30 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
173 ms 47024 KB
///OWNERUL LUI ADI <3
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:11:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:11:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:11:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:11:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:11:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[2000
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8536 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 4 ms 8536 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8024 KB Output is correct
10 Correct 4 ms 8540 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 4 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8540 KB Output is correct
17 Correct 4 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 3 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8464 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 55 ms 26308 KB Output is correct
2 Correct 57 ms 25784 KB Output is correct
3 Correct 58 ms 25780 KB Output is correct
4 Correct 56 ms 27008 KB Output is correct
5 Correct 51 ms 19132 KB Output is correct
6 Correct 53 ms 18152 KB Output is correct
7 Correct 59 ms 26036 KB Output is correct
8 Correct 53 ms 27056 KB Output is correct
9 Correct 14 ms 8540 KB Output is correct
10 Correct 58 ms 26552 KB Output is correct
11 Correct 12 ms 8540 KB Output is correct
12 Correct 28 ms 9680 KB Output is correct
13 Correct 63 ms 26432 KB Output is correct
14 Correct 57 ms 26036 KB Output is correct
15 Correct 14 ms 8796 KB Output is correct
16 Correct 67 ms 25832 KB Output is correct
17 Correct 63 ms 26288 KB Output is correct
18 Correct 21 ms 9176 KB Output is correct
19 Correct 68 ms 25900 KB Output is correct
20 Correct 60 ms 26156 KB Output is correct
21 Correct 14 ms 8796 KB Output is correct
22 Correct 60 ms 18776 KB Output is correct
23 Correct 53 ms 26488 KB Output is correct
24 Correct 13 ms 8540 KB Output is correct
25 Correct 13 ms 8536 KB Output is correct
26 Correct 49 ms 18776 KB Output is correct
27 Correct 48 ms 19420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8536 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 4 ms 8536 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8024 KB Output is correct
10 Correct 4 ms 8540 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 4 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8540 KB Output is correct
17 Correct 4 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 3 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8464 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 55 ms 26308 KB Output is correct
30 Correct 57 ms 25784 KB Output is correct
31 Correct 58 ms 25780 KB Output is correct
32 Correct 56 ms 27008 KB Output is correct
33 Correct 51 ms 19132 KB Output is correct
34 Correct 53 ms 18152 KB Output is correct
35 Correct 59 ms 26036 KB Output is correct
36 Correct 53 ms 27056 KB Output is correct
37 Correct 14 ms 8540 KB Output is correct
38 Correct 58 ms 26552 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 28 ms 9680 KB Output is correct
41 Correct 63 ms 26432 KB Output is correct
42 Correct 57 ms 26036 KB Output is correct
43 Correct 14 ms 8796 KB Output is correct
44 Correct 67 ms 25832 KB Output is correct
45 Correct 63 ms 26288 KB Output is correct
46 Correct 21 ms 9176 KB Output is correct
47 Correct 68 ms 25900 KB Output is correct
48 Correct 60 ms 26156 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 60 ms 18776 KB Output is correct
51 Correct 53 ms 26488 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 13 ms 8536 KB Output is correct
54 Correct 49 ms 18776 KB Output is correct
55 Correct 48 ms 19420 KB Output is correct
56 Correct 134 ms 33588 KB Output is correct
57 Correct 155 ms 31040 KB Output is correct
58 Correct 139 ms 32912 KB Output is correct
59 Correct 119 ms 29492 KB Output is correct
60 Correct 129 ms 24088 KB Output is correct
61 Correct 141 ms 32824 KB Output is correct
62 Correct 120 ms 28592 KB Output is correct
63 Correct 99 ms 27672 KB Output is correct
64 Correct 54 ms 10948 KB Output is correct
65 Correct 124 ms 30804 KB Output is correct
66 Correct 48 ms 11320 KB Output is correct
67 Correct 49 ms 12220 KB Output is correct
68 Correct 72 ms 27524 KB Output is correct
69 Correct 132 ms 31796 KB Output is correct
70 Correct 16 ms 9048 KB Output is correct
71 Correct 68 ms 28348 KB Output is correct
72 Correct 129 ms 30028 KB Output is correct
73 Correct 14 ms 8792 KB Output is correct
74 Correct 62 ms 18772 KB Output is correct
75 Correct 134 ms 33336 KB Output is correct
76 Correct 16 ms 8536 KB Output is correct
77 Correct 58 ms 17716 KB Output is correct
78 Correct 103 ms 28524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 10700 KB Output is correct
2 Correct 40 ms 9432 KB Output is correct
3 Correct 15 ms 8796 KB Output is correct
4 Correct 15 ms 8796 KB Output is correct
5 Correct 141 ms 31544 KB Output is correct
6 Correct 144 ms 29892 KB Output is correct
7 Correct 144 ms 29996 KB Output is correct
8 Correct 136 ms 29740 KB Output is correct
9 Correct 165 ms 32340 KB Output is correct
10 Correct 141 ms 29892 KB Output is correct
11 Correct 134 ms 28140 KB Output is correct
12 Correct 119 ms 30696 KB Output is correct
13 Correct 100 ms 12364 KB Output is correct
14 Correct 143 ms 29324 KB Output is correct
15 Correct 150 ms 29236 KB Output is correct
16 Correct 61 ms 19240 KB Output is correct
17 Correct 71 ms 26032 KB Output is correct
18 Correct 148 ms 29788 KB Output is correct
19 Correct 65 ms 27856 KB Output is correct
20 Correct 71 ms 26296 KB Output is correct
21 Correct 133 ms 29032 KB Output is correct
22 Correct 59 ms 17796 KB Output is correct
23 Correct 67 ms 27792 KB Output is correct
24 Correct 149 ms 32596 KB Output is correct
25 Correct 57 ms 28088 KB Output is correct
26 Correct 57 ms 26380 KB Output is correct
27 Correct 125 ms 29756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8536 KB Output is correct
2 Correct 5 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 5 ms 8540 KB Output is correct
5 Correct 4 ms 8536 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8540 KB Output is correct
9 Correct 3 ms 8024 KB Output is correct
10 Correct 4 ms 8540 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8280 KB Output is correct
13 Correct 4 ms 8540 KB Output is correct
14 Correct 4 ms 8540 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8540 KB Output is correct
17 Correct 4 ms 8536 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8540 KB Output is correct
20 Correct 5 ms 8540 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8540 KB Output is correct
23 Correct 5 ms 8540 KB Output is correct
24 Correct 4 ms 8280 KB Output is correct
25 Correct 3 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8464 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 55 ms 26308 KB Output is correct
30 Correct 57 ms 25784 KB Output is correct
31 Correct 58 ms 25780 KB Output is correct
32 Correct 56 ms 27008 KB Output is correct
33 Correct 51 ms 19132 KB Output is correct
34 Correct 53 ms 18152 KB Output is correct
35 Correct 59 ms 26036 KB Output is correct
36 Correct 53 ms 27056 KB Output is correct
37 Correct 14 ms 8540 KB Output is correct
38 Correct 58 ms 26552 KB Output is correct
39 Correct 12 ms 8540 KB Output is correct
40 Correct 28 ms 9680 KB Output is correct
41 Correct 63 ms 26432 KB Output is correct
42 Correct 57 ms 26036 KB Output is correct
43 Correct 14 ms 8796 KB Output is correct
44 Correct 67 ms 25832 KB Output is correct
45 Correct 63 ms 26288 KB Output is correct
46 Correct 21 ms 9176 KB Output is correct
47 Correct 68 ms 25900 KB Output is correct
48 Correct 60 ms 26156 KB Output is correct
49 Correct 14 ms 8796 KB Output is correct
50 Correct 60 ms 18776 KB Output is correct
51 Correct 53 ms 26488 KB Output is correct
52 Correct 13 ms 8540 KB Output is correct
53 Correct 13 ms 8536 KB Output is correct
54 Correct 49 ms 18776 KB Output is correct
55 Correct 48 ms 19420 KB Output is correct
56 Correct 134 ms 33588 KB Output is correct
57 Correct 155 ms 31040 KB Output is correct
58 Correct 139 ms 32912 KB Output is correct
59 Correct 119 ms 29492 KB Output is correct
60 Correct 129 ms 24088 KB Output is correct
61 Correct 141 ms 32824 KB Output is correct
62 Correct 120 ms 28592 KB Output is correct
63 Correct 99 ms 27672 KB Output is correct
64 Correct 54 ms 10948 KB Output is correct
65 Correct 124 ms 30804 KB Output is correct
66 Correct 48 ms 11320 KB Output is correct
67 Correct 49 ms 12220 KB Output is correct
68 Correct 72 ms 27524 KB Output is correct
69 Correct 132 ms 31796 KB Output is correct
70 Correct 16 ms 9048 KB Output is correct
71 Correct 68 ms 28348 KB Output is correct
72 Correct 129 ms 30028 KB Output is correct
73 Correct 14 ms 8792 KB Output is correct
74 Correct 62 ms 18772 KB Output is correct
75 Correct 134 ms 33336 KB Output is correct
76 Correct 16 ms 8536 KB Output is correct
77 Correct 58 ms 17716 KB Output is correct
78 Correct 103 ms 28524 KB Output is correct
79 Correct 48 ms 10700 KB Output is correct
80 Correct 40 ms 9432 KB Output is correct
81 Correct 15 ms 8796 KB Output is correct
82 Correct 15 ms 8796 KB Output is correct
83 Correct 141 ms 31544 KB Output is correct
84 Correct 144 ms 29892 KB Output is correct
85 Correct 144 ms 29996 KB Output is correct
86 Correct 136 ms 29740 KB Output is correct
87 Correct 165 ms 32340 KB Output is correct
88 Correct 141 ms 29892 KB Output is correct
89 Correct 134 ms 28140 KB Output is correct
90 Correct 119 ms 30696 KB Output is correct
91 Correct 100 ms 12364 KB Output is correct
92 Correct 143 ms 29324 KB Output is correct
93 Correct 150 ms 29236 KB Output is correct
94 Correct 61 ms 19240 KB Output is correct
95 Correct 71 ms 26032 KB Output is correct
96 Correct 148 ms 29788 KB Output is correct
97 Correct 65 ms 27856 KB Output is correct
98 Correct 71 ms 26296 KB Output is correct
99 Correct 133 ms 29032 KB Output is correct
100 Correct 59 ms 17796 KB Output is correct
101 Correct 67 ms 27792 KB Output is correct
102 Correct 149 ms 32596 KB Output is correct
103 Correct 57 ms 28088 KB Output is correct
104 Correct 57 ms 26380 KB Output is correct
105 Correct 125 ms 29756 KB Output is correct
106 Correct 36 ms 9184 KB Output is correct
107 Correct 41 ms 10956 KB Output is correct
108 Correct 38 ms 9936 KB Output is correct
109 Correct 42 ms 10708 KB Output is correct
110 Correct 162 ms 33244 KB Output is correct
111 Correct 161 ms 30764 KB Output is correct
112 Correct 154 ms 32572 KB Output is correct
113 Correct 146 ms 29736 KB Output is correct
114 Correct 167 ms 31832 KB Output is correct
115 Correct 173 ms 31388 KB Output is correct
116 Correct 167 ms 47024 KB Output is correct
117 Correct 133 ms 30144 KB Output is correct
118 Correct 109 ms 14292 KB Output is correct
119 Correct 53 ms 11344 KB Output is correct
120 Correct 159 ms 30512 KB Output is correct
121 Correct 84 ms 27060 KB Output is correct
122 Correct 74 ms 27644 KB Output is correct
123 Correct 160 ms 31268 KB Output is correct
124 Correct 63 ms 19400 KB Output is correct
125 Correct 82 ms 27064 KB Output is correct
126 Correct 161 ms 32132 KB Output is correct
127 Correct 58 ms 17872 KB Output is correct
128 Correct 71 ms 27572 KB Output is correct
129 Correct 150 ms 33072 KB Output is correct
130 Correct 66 ms 28348 KB Output is correct
131 Correct 72 ms 27320 KB Output is correct
132 Correct 137 ms 30564 KB Output is correct