Submission #987925

# Submission time Handle Problem Language Result Execution time Memory
987925 2024-05-23T19:30:31 Z Popi_Este_Un_Clovn Shopping Plans (CCO20_day2problem3) C++14
25 / 25
170 ms 46508 KB
///OWNERUL LUI ADI <3
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#pragma GCC optimize("O1")
#pragma GCC optimize("O2")
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}

Compilation message

Main.cpp: In function 'node special(node)':
Main.cpp:11:365: warning: variable 'g' set but not used [-Wunused-but-set-variable]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                             ^
Main.cpp: In function 'node godown(node)':
Main.cpp:11:923: warning: variable 'g' set but not used [-Wunused-but-set-variable]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ^
Main.cpp: In function 'int main()':
Main.cpp:11:1872: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~~~~~~~~~~~~~^~~~~
Main.cpp:11:2074: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[200005],init[200005],cost[200005];bool cmp2(int a,int b){return cost[a]<cost[b];}node special(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];curr.lst=0;curr.sum+=adj[g2][0];curr.layer++;curr.biti=1;curr.bitipref=0;curr.rghtbord=adj[g2].size()-1;return curr;}node skip(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g]==0){curr.sum=curr.sum-adj[g][curr.lst];}else curr.sum=curr.sum-adj[g][curr.lst]+adj[g][curr.lst-1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node godown(node curr){int g,g2;g=ord[curr.layer];g2=ord[curr.layer+1];if(x[g2]==0){return special(curr);}curr.layer++;curr.biti=x[g2];curr.lst=x[g2];curr.bitipref=x[g2]-1;curr.rghtbord=adj[g2].size()-1;curr.sum+=adj[g2][curr.lst]-adj[g2][curr.lst-1];return curr;} node shift(node curr){int g;g=ord[curr.layer];curr.lst++;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandshift(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=curr.bitipref;curr.bitipref--;curr.sum+=adj[g][curr.lst]-adj[g][curr.lst-1];return curr;} node fixborderandcreate(node curr){int g;g=ord[curr.layer];curr.rghtbord=curr.lst-1;curr.lst=0;curr.biti++;curr.sum+=init[g];return curr;}signed  main(){int n,m,k,i,a,b;long long sum=0;ios_base::sync_with_stdio(false);cin.tie(NULL);cin>>n>>m>>k;for(i=1; i<=n; i++){cin>>a>>b;adj[a].push_back(b);}for(i=1; i<=m; i++){cin>>x[i]>>y[i];if(y[i]==0){cost[i]=inf;}else{sort(adj[i].begin(),adj[i].end());if(adj[i].size()<x[i]){for(int j=1; j<=k; j++){cout<<-1<<'\n';}return 0;}if(x[i]==0){if(adj[i].size()==0){cost[i]=inf;}else{init[i]=adj[i][0];cost[i]=adj[i][0];}}else{int vkuk=adj[i][0];init[i]=adj[i][0];for(int j=0; j<adj[i].size(); j++){if(j+1<=x[i]){sum+=adj[i][j];}adj[i][j]-=vkuk;}if(adj[i].size()==x[i]){cost[i]=inf;}else{cost[i]=adj[i][x[i]]-adj[i][x[i]-1];}}}ord.push_back(i);}sort(ord.begin(),ord.end(),cmp2);m--;for(i=0; i<ord.size(); i++){if(cost[ord[i]]==inf){m=i-1;break;}}node curr,curr2;cout<<sum<<'\n';k--;if(m>=0){int g=ord[0];if(x[g]==0){curr.layer=0;curr.sum=adj[g][0];curr.bitipref=0;curr.lst=0;curr.biti=1;curr.rghtbord=adj[g].size()-1;pq.push(curr);}else{curr.layer=0;curr.sum=adj[g][x[g]]-adj[g][x[g]-1];curr.bitipref=x[g]-1;curr.lst=x[g];curr.rghtbord=adj[g].size()-1;curr.biti=x[g];pq.push(curr);}while(pq.size() && k){curr=pq.top();pq.pop();k--;cout<<curr.sum+sum<<'\n';g=ord[curr.layer];if(x[g]==0 && curr.biti==1 && curr.layer+1<=m && curr.lst==0){curr2=skip(curr);pq.push(curr2);}if(curr.lst==x[g] && curr.bitipref==x[g]-1 && curr.biti==x[g] && curr.layer+1<=m){curr2=skip(curr);pq.push(curr2);}if(curr.lst+1<=curr.rghtbord){curr2=shift(curr);pq.push(curr2);}if(curr.bitipref>=1 && curr.lst>=curr.bitipref+1){curr2=fixborderandshift(curr);pq.push(curr2);}if(curr.bitipref==0 && curr.lst>=1 && curr.biti+1<=y[g]){curr2=fixborderandcreate(curr);pq.push(curr2);}if(curr.layer+1<=m){curr2=godown(curr);pq.push(curr2);}}}while(k){k--;cout<<-1<<'\n';}return 0;}
      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ~^~~~~~~~~~~~~~
Main.cpp:11:2158: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   11 | using namespace std;long long inf=1e9+10;struct node{long long  sum;int layer,bitipref,lst,rghtbord,biti;};struct cmp{bool operator()(node a,node  b){return a.sum>b.sum;}};priority_queue<node,vector<node>,cmp>pq;vector<int>adj[200005],ord;int y[200005],x[2000
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 4 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 5 ms 8692 KB Output is correct
8 Correct 5 ms 8496 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8536 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8508 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8280 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8548 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8372 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8176 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 57 ms 28080 KB Output is correct
2 Correct 58 ms 26692 KB Output is correct
3 Correct 57 ms 26808 KB Output is correct
4 Correct 57 ms 27568 KB Output is correct
5 Correct 59 ms 18632 KB Output is correct
6 Correct 56 ms 18872 KB Output is correct
7 Correct 58 ms 27064 KB Output is correct
8 Correct 52 ms 25520 KB Output is correct
9 Correct 14 ms 8536 KB Output is correct
10 Correct 58 ms 26076 KB Output is correct
11 Correct 13 ms 8536 KB Output is correct
12 Correct 28 ms 9652 KB Output is correct
13 Correct 61 ms 25780 KB Output is correct
14 Correct 57 ms 27336 KB Output is correct
15 Correct 14 ms 8796 KB Output is correct
16 Correct 60 ms 27584 KB Output is correct
17 Correct 63 ms 27056 KB Output is correct
18 Correct 22 ms 9180 KB Output is correct
19 Correct 66 ms 26552 KB Output is correct
20 Correct 60 ms 27100 KB Output is correct
21 Correct 18 ms 8792 KB Output is correct
22 Correct 53 ms 17092 KB Output is correct
23 Correct 56 ms 25244 KB Output is correct
24 Correct 12 ms 8792 KB Output is correct
25 Correct 13 ms 8536 KB Output is correct
26 Correct 55 ms 19144 KB Output is correct
27 Correct 54 ms 19348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 4 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 5 ms 8692 KB Output is correct
8 Correct 5 ms 8496 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8536 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8508 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8280 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8548 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8372 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8176 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 57 ms 28080 KB Output is correct
30 Correct 58 ms 26692 KB Output is correct
31 Correct 57 ms 26808 KB Output is correct
32 Correct 57 ms 27568 KB Output is correct
33 Correct 59 ms 18632 KB Output is correct
34 Correct 56 ms 18872 KB Output is correct
35 Correct 58 ms 27064 KB Output is correct
36 Correct 52 ms 25520 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 58 ms 26076 KB Output is correct
39 Correct 13 ms 8536 KB Output is correct
40 Correct 28 ms 9652 KB Output is correct
41 Correct 61 ms 25780 KB Output is correct
42 Correct 57 ms 27336 KB Output is correct
43 Correct 14 ms 8796 KB Output is correct
44 Correct 60 ms 27584 KB Output is correct
45 Correct 63 ms 27056 KB Output is correct
46 Correct 22 ms 9180 KB Output is correct
47 Correct 66 ms 26552 KB Output is correct
48 Correct 60 ms 27100 KB Output is correct
49 Correct 18 ms 8792 KB Output is correct
50 Correct 53 ms 17092 KB Output is correct
51 Correct 56 ms 25244 KB Output is correct
52 Correct 12 ms 8792 KB Output is correct
53 Correct 13 ms 8536 KB Output is correct
54 Correct 55 ms 19144 KB Output is correct
55 Correct 54 ms 19348 KB Output is correct
56 Correct 133 ms 33080 KB Output is correct
57 Correct 154 ms 30352 KB Output is correct
58 Correct 133 ms 31332 KB Output is correct
59 Correct 120 ms 31036 KB Output is correct
60 Correct 131 ms 24108 KB Output is correct
61 Correct 129 ms 32248 KB Output is correct
62 Correct 119 ms 28064 KB Output is correct
63 Correct 106 ms 28672 KB Output is correct
64 Correct 54 ms 10952 KB Output is correct
65 Correct 156 ms 31384 KB Output is correct
66 Correct 49 ms 11248 KB Output is correct
67 Correct 57 ms 12240 KB Output is correct
68 Correct 70 ms 27128 KB Output is correct
69 Correct 127 ms 30592 KB Output is correct
70 Correct 16 ms 9052 KB Output is correct
71 Correct 67 ms 26496 KB Output is correct
72 Correct 126 ms 30020 KB Output is correct
73 Correct 14 ms 8796 KB Output is correct
74 Correct 65 ms 18984 KB Output is correct
75 Correct 159 ms 33692 KB Output is correct
76 Correct 15 ms 8540 KB Output is correct
77 Correct 58 ms 18932 KB Output is correct
78 Correct 119 ms 28380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 10704 KB Output is correct
2 Correct 37 ms 9436 KB Output is correct
3 Correct 16 ms 8796 KB Output is correct
4 Correct 14 ms 8796 KB Output is correct
5 Correct 146 ms 31980 KB Output is correct
6 Correct 139 ms 29688 KB Output is correct
7 Correct 148 ms 29980 KB Output is correct
8 Correct 134 ms 30672 KB Output is correct
9 Correct 144 ms 32668 KB Output is correct
10 Correct 142 ms 30576 KB Output is correct
11 Correct 138 ms 28784 KB Output is correct
12 Correct 116 ms 29036 KB Output is correct
13 Correct 100 ms 12372 KB Output is correct
14 Correct 145 ms 30004 KB Output is correct
15 Correct 144 ms 30264 KB Output is correct
16 Correct 60 ms 18372 KB Output is correct
17 Correct 73 ms 27024 KB Output is correct
18 Correct 146 ms 31428 KB Output is correct
19 Correct 65 ms 27492 KB Output is correct
20 Correct 86 ms 27304 KB Output is correct
21 Correct 144 ms 28976 KB Output is correct
22 Correct 63 ms 18668 KB Output is correct
23 Correct 70 ms 26384 KB Output is correct
24 Correct 160 ms 31224 KB Output is correct
25 Correct 57 ms 28344 KB Output is correct
26 Correct 59 ms 28348 KB Output is correct
27 Correct 120 ms 28912 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 8540 KB Output is correct
2 Correct 4 ms 8540 KB Output is correct
3 Correct 4 ms 8540 KB Output is correct
4 Correct 4 ms 8540 KB Output is correct
5 Correct 4 ms 8540 KB Output is correct
6 Correct 5 ms 8540 KB Output is correct
7 Correct 5 ms 8692 KB Output is correct
8 Correct 5 ms 8496 KB Output is correct
9 Correct 3 ms 8028 KB Output is correct
10 Correct 5 ms 8536 KB Output is correct
11 Correct 3 ms 8028 KB Output is correct
12 Correct 3 ms 8284 KB Output is correct
13 Correct 4 ms 8508 KB Output is correct
14 Correct 5 ms 8540 KB Output is correct
15 Correct 4 ms 8284 KB Output is correct
16 Correct 4 ms 8540 KB Output is correct
17 Correct 5 ms 8540 KB Output is correct
18 Correct 3 ms 8280 KB Output is correct
19 Correct 4 ms 8540 KB Output is correct
20 Correct 5 ms 8548 KB Output is correct
21 Correct 3 ms 8028 KB Output is correct
22 Correct 3 ms 8372 KB Output is correct
23 Correct 4 ms 8540 KB Output is correct
24 Correct 4 ms 8176 KB Output is correct
25 Correct 4 ms 8284 KB Output is correct
26 Correct 4 ms 8540 KB Output is correct
27 Correct 4 ms 8540 KB Output is correct
28 Correct 4 ms 8540 KB Output is correct
29 Correct 57 ms 28080 KB Output is correct
30 Correct 58 ms 26692 KB Output is correct
31 Correct 57 ms 26808 KB Output is correct
32 Correct 57 ms 27568 KB Output is correct
33 Correct 59 ms 18632 KB Output is correct
34 Correct 56 ms 18872 KB Output is correct
35 Correct 58 ms 27064 KB Output is correct
36 Correct 52 ms 25520 KB Output is correct
37 Correct 14 ms 8536 KB Output is correct
38 Correct 58 ms 26076 KB Output is correct
39 Correct 13 ms 8536 KB Output is correct
40 Correct 28 ms 9652 KB Output is correct
41 Correct 61 ms 25780 KB Output is correct
42 Correct 57 ms 27336 KB Output is correct
43 Correct 14 ms 8796 KB Output is correct
44 Correct 60 ms 27584 KB Output is correct
45 Correct 63 ms 27056 KB Output is correct
46 Correct 22 ms 9180 KB Output is correct
47 Correct 66 ms 26552 KB Output is correct
48 Correct 60 ms 27100 KB Output is correct
49 Correct 18 ms 8792 KB Output is correct
50 Correct 53 ms 17092 KB Output is correct
51 Correct 56 ms 25244 KB Output is correct
52 Correct 12 ms 8792 KB Output is correct
53 Correct 13 ms 8536 KB Output is correct
54 Correct 55 ms 19144 KB Output is correct
55 Correct 54 ms 19348 KB Output is correct
56 Correct 133 ms 33080 KB Output is correct
57 Correct 154 ms 30352 KB Output is correct
58 Correct 133 ms 31332 KB Output is correct
59 Correct 120 ms 31036 KB Output is correct
60 Correct 131 ms 24108 KB Output is correct
61 Correct 129 ms 32248 KB Output is correct
62 Correct 119 ms 28064 KB Output is correct
63 Correct 106 ms 28672 KB Output is correct
64 Correct 54 ms 10952 KB Output is correct
65 Correct 156 ms 31384 KB Output is correct
66 Correct 49 ms 11248 KB Output is correct
67 Correct 57 ms 12240 KB Output is correct
68 Correct 70 ms 27128 KB Output is correct
69 Correct 127 ms 30592 KB Output is correct
70 Correct 16 ms 9052 KB Output is correct
71 Correct 67 ms 26496 KB Output is correct
72 Correct 126 ms 30020 KB Output is correct
73 Correct 14 ms 8796 KB Output is correct
74 Correct 65 ms 18984 KB Output is correct
75 Correct 159 ms 33692 KB Output is correct
76 Correct 15 ms 8540 KB Output is correct
77 Correct 58 ms 18932 KB Output is correct
78 Correct 119 ms 28380 KB Output is correct
79 Correct 44 ms 10704 KB Output is correct
80 Correct 37 ms 9436 KB Output is correct
81 Correct 16 ms 8796 KB Output is correct
82 Correct 14 ms 8796 KB Output is correct
83 Correct 146 ms 31980 KB Output is correct
84 Correct 139 ms 29688 KB Output is correct
85 Correct 148 ms 29980 KB Output is correct
86 Correct 134 ms 30672 KB Output is correct
87 Correct 144 ms 32668 KB Output is correct
88 Correct 142 ms 30576 KB Output is correct
89 Correct 138 ms 28784 KB Output is correct
90 Correct 116 ms 29036 KB Output is correct
91 Correct 100 ms 12372 KB Output is correct
92 Correct 145 ms 30004 KB Output is correct
93 Correct 144 ms 30264 KB Output is correct
94 Correct 60 ms 18372 KB Output is correct
95 Correct 73 ms 27024 KB Output is correct
96 Correct 146 ms 31428 KB Output is correct
97 Correct 65 ms 27492 KB Output is correct
98 Correct 86 ms 27304 KB Output is correct
99 Correct 144 ms 28976 KB Output is correct
100 Correct 63 ms 18668 KB Output is correct
101 Correct 70 ms 26384 KB Output is correct
102 Correct 160 ms 31224 KB Output is correct
103 Correct 57 ms 28344 KB Output is correct
104 Correct 59 ms 28348 KB Output is correct
105 Correct 120 ms 28912 KB Output is correct
106 Correct 36 ms 9184 KB Output is correct
107 Correct 43 ms 10800 KB Output is correct
108 Correct 39 ms 9868 KB Output is correct
109 Correct 41 ms 10700 KB Output is correct
110 Correct 157 ms 33604 KB Output is correct
111 Correct 163 ms 30756 KB Output is correct
112 Correct 155 ms 31020 KB Output is correct
113 Correct 162 ms 30108 KB Output is correct
114 Correct 154 ms 33556 KB Output is correct
115 Correct 147 ms 30516 KB Output is correct
116 Correct 170 ms 46508 KB Output is correct
117 Correct 139 ms 28964 KB Output is correct
118 Correct 120 ms 14284 KB Output is correct
119 Correct 51 ms 11344 KB Output is correct
120 Correct 156 ms 30772 KB Output is correct
121 Correct 69 ms 27380 KB Output is correct
122 Correct 77 ms 28440 KB Output is correct
123 Correct 156 ms 31764 KB Output is correct
124 Correct 63 ms 18376 KB Output is correct
125 Correct 96 ms 26292 KB Output is correct
126 Correct 145 ms 31228 KB Output is correct
127 Correct 59 ms 18736 KB Output is correct
128 Correct 73 ms 28488 KB Output is correct
129 Correct 152 ms 33424 KB Output is correct
130 Correct 83 ms 28088 KB Output is correct
131 Correct 85 ms 27272 KB Output is correct
132 Correct 133 ms 30124 KB Output is correct