Submission #980362

# Submission time Handle Problem Language Result Execution time Memory
980362 2024-05-12T06:16:23 Z vjudge1 Longest Trip (IOI23_longesttrip) C++17
60 / 100
20 ms 1116 KB
#include "longesttrip.h"
#include <bits/stdc++.h>

#include <vector>
#define MP make_pair
#define f first
#define s second
#define mid ((l+r)>>1)
typedef long long ll;
using namespace std;

mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());

const int INF = (int)1e6;

vector <int> auxa,auxb;

bool conectados(int A, int B) {
    auxa.clear(); auxb.clear();
    auxa.push_back(A);
    auxb.push_back(B);
    return are_connected(auxa,auxb);
}

struct linea{
    deque <int> lin;
    linea(){}
    linea(int A) {
        lin.push_front(A);
    }
    void unir(linea &B, int NB, int NA) {
        if (NA == lin.front() && NB == B.lin.front()) {
            while (!B.lin.empty()) {
                lin.push_front(B.lin.front());
                B.lin.pop_front();
            }
            return;
        }
        if (NA == lin.front() && NB == B.lin.back()) {
            while (!B.lin.empty()) {
                lin.push_front(B.lin.back());
                B.lin.pop_back();
            }
            return;
        }
        if (NA == lin.back() && NB == B.lin.front()) {
            while (!B.lin.empty()) {
                lin.push_back(B.lin.front());
                B.lin.pop_front();
            }
            return;
        }
        if (NA == lin.back() && NB == B.lin.back()) {
            while (!B.lin.empty()) {
                lin.push_back(B.lin.back());
                B.lin.pop_back();
            }
            return;
        }
        return;
    }
};

vector <int> caso_base(int N) {
    auxa.clear();
    auxa.push_back(0);
    if (conectados(0, 1)) auxa.push_back(1);
    return auxa;
}

void dfs(int nodo, vector <bool> &vis, vector <vector<int>> &g, vector <int> &ans, int anc1, int anc2) {
    ans.push_back(nodo);
    if (ans.size() > 1) {
        anc1 = -1;
        anc2 = -1;
    }
    vis[nodo] = true;
    for (auto &it : g[nodo]) {
        if (vis[it] || it == anc1 || it == anc2) continue;
        dfs(it, vis, g, ans, anc1, anc2);
    }
    return;
}

int bin(int l, int r, vector <int> &ar, vector <int> &bus) {
    if (l == r) return ar[l];
    auxa.clear();
    for (int i = l; i <= mid; i++) auxa.push_back(ar[i]);
    if (are_connected(auxa, bus)) return bin(l, mid, ar, bus);
    else return bin(mid + 1, r, ar, bus);
}

std::vector<int> longest_trip(int N, int D) {
    if (N <= 2) return caso_base(N);
    vector <linea> V;
    vector <int> ans;
    for (int i = 0; i < N; i++)
        V.push_back(linea(i));
    /*
    while (V.size() >= 4) {
        shuffle(V.begin(), V.end(), rnd);
        linea A = V.back();
        V.pop_back();
        linea B = V.back();
        V.pop_back();
        linea C = V.back();
        V.pop_back();
        linea D = V.back();
        V.pop_back();

        // 1: A - B
        // 2: B - C
        // 3: C - D
        // 4: D - A
        // 5: A - C
        // 6: B - D

        bool p1, p2, p3, p4, p5, p6;

        p1 = conectados(A.lin.front(), B.lin.front());

        if (p1) {
            A.unir(B, B.lin.front(), A.lin.front());
            V.push_back(A);
            V.push_back(C);
            V.push_back(D);
            continue;
        }

        p3 = conectados(C.lin.front(), D.lin.front());

        if (p3) {
            C.unir(D, D.lin.front(), C.lin.front());
            V.push_back(A);
            V.push_back(B);
            V.push_back(C);
            continue;
        }

        p5 = conectados(A.lin.front(), C.lin.front());

        //p5 y p6
        if (p5) {
            A.unir(C, C.lin.front(), A.lin.front());
            B.unir(D, D.lin.front(), B.lin.front());
            V.push_back(A);
            V.push_back(B);
            continue;
        }

        //p2 y p4
        B.unir(C, C.lin.front(), B.lin.front());
        A.unir(D, D.lin.front(), A.lin.front());
        V.push_back(A);
        V.push_back(B);
    }
    */

    shuffle(V.begin(), V.end(), rnd);
    while (V.size() >= 3) {
        linea A = V.back();
        V.pop_back();
        linea B = V.back();
        V.pop_back();
        linea C = V.back();
        V.pop_back();
        if (conectados(A.lin.front(), B.lin.front())) {
            A.unir(B, B.lin.front(), A.lin.front());
            V.push_back(A);
            V.push_back(C);
        }
        else if (conectados(A.lin.front(), C.lin.front())) {
            A.unir(C, C.lin.front(), A.lin.front());
            V.push_back(A);
            V.push_back(B);
        }
        else {
            B.unir(C, C.lin.front(), B.lin.front());
            V.push_back(B);
            V.push_back(A);
        }
        shuffle(V.begin(), V.end(), rnd);
    }

    linea A = V[0], B = V[1];
    vector <int> VA, VB;
    while (!V[1].lin.empty()) {
        VB.push_back(V[1].lin.front());
        V[1].lin.pop_front();
    }
    while (!V[0].lin.empty()) {
        VA.push_back(V[0].lin.front());
        V[0].lin.pop_front();
    }

    if (!are_connected(VA,VB)) {
        if (VA.size() > VB.size()) return VA;
        return VB;
    }

    V[0] = A; V[1] = B;

    bool c1 = false, c2 = false, c3 = false, c4 = false;
    c1 = conectados(V[0].lin.front(), V[1].lin.front());
    if (!c1) c2 = conectados(V[0].lin.front(), V[1].lin.back());
    if (!c1 && !c2) c3 = conectados(V[0].lin.back(), V[1].lin.back());
    if (!c1 && !c2 && !c3) c4 = conectados(V[0].lin.back(), V[1].lin.front());
    if (c1 || c2 || c3 || c4) {
        if (c1) V[1].unir(V[0], V[0].lin.front(), V[1].lin.front());
        else if (c2) V[1].unir(V[0], V[0].lin.front(), V[1].lin.back());
        else if (c3) V[1].unir(V[0], V[0].lin.back(), V[1].lin.back());
        else if (c4) V[1].unir(V[0], V[0].lin.back(), V[1].lin.front());

        while (!V[1].lin.empty()) {
            ans.push_back(V[1].lin.front());
            V[1].lin.pop_front();
        }
        return ans;
    }

    int ancla = bin(0, VA.size() - 1, VA, VB);
    vector <int> vancla;
    vancla.push_back(ancla);
    int ancla2 = bin(0, VB.size() - 1, VB, vancla);

    vector <vector<int>> g(N + 2);
    vector <bool> vis(N + 2);
    for (int i = 0; i < N + 2; i++)
        vis[i] = false;

    for (int i = 0; i < VA.size() - 1; i++) {
        g[VA[i]].push_back(VA[i + 1]);
        g[VA[i + 1]].push_back(VA[i]);
    }
    for (int i = 0; i < VB.size() - 1; i++) {
        g[VB[i]].push_back(VB[i + 1]);
        g[VB[i + 1]].push_back(VB[i]);
    }
    g[VA[VA.size() - 1]].push_back(VA[0]);
    g[VA[0]].push_back(VA[VA.size() - 1]);

    g[VB[VB.size() - 1]].push_back(VB[0]);
    g[VB[0]].push_back(VB[VB.size() - 1]);

    g[ancla].push_back(ancla2);
    g[ancla2].push_back(ancla);

    if (VA.size() != 1) {
        for (auto &it : g[ancla]) {
            if (it != ancla2) {
                dfs(it, vis, g, ans, ancla, ancla2);
                break;
            }
        }
    }
    else {
        for (auto &it : g[ancla2]) {
            if (it != ancla) {
                dfs(it, vis, g, ans, ancla, ancla2);
                break;
            }
        }
    }
    return ans;
}

Compilation message

longesttrip.cpp: In function 'std::vector<int> longest_trip(int, int)':
longesttrip.cpp:231:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  231 |     for (int i = 0; i < VA.size() - 1; i++) {
      |                     ~~^~~~~~~~~~~~~~~
longesttrip.cpp:235:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  235 |     for (int i = 0; i < VB.size() - 1; i++) {
      |                     ~~^~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 6 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 344 KB Output is correct
2 Correct 8 ms 596 KB Output is correct
3 Correct 7 ms 500 KB Output is correct
4 Correct 11 ms 600 KB Output is correct
5 Correct 13 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 344 KB Output is correct
2 Correct 6 ms 344 KB Output is correct
3 Correct 7 ms 600 KB Output is correct
4 Correct 11 ms 1112 KB Output is correct
5 Correct 14 ms 932 KB Output is correct
6 Correct 10 ms 344 KB Output is correct
7 Correct 7 ms 344 KB Output is correct
8 Correct 7 ms 600 KB Output is correct
9 Correct 9 ms 856 KB Output is correct
10 Correct 15 ms 1112 KB Output is correct
11 Correct 16 ms 936 KB Output is correct
12 Correct 17 ms 680 KB Output is correct
13 Correct 15 ms 688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 344 KB Output is correct
2 Correct 6 ms 344 KB Output is correct
3 Correct 7 ms 600 KB Output is correct
4 Correct 9 ms 568 KB Output is correct
5 Correct 15 ms 936 KB Output is correct
6 Correct 10 ms 344 KB Output is correct
7 Correct 8 ms 344 KB Output is correct
8 Correct 8 ms 344 KB Output is correct
9 Correct 9 ms 856 KB Output is correct
10 Correct 13 ms 936 KB Output is correct
11 Correct 14 ms 1112 KB Output is correct
12 Correct 15 ms 1112 KB Output is correct
13 Correct 14 ms 1112 KB Output is correct
14 Correct 7 ms 344 KB Output is correct
15 Correct 10 ms 344 KB Output is correct
16 Incorrect 6 ms 344 KB Incorrect
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 344 KB Output is correct
2 Correct 7 ms 344 KB Output is correct
3 Correct 7 ms 504 KB Output is correct
4 Correct 10 ms 600 KB Output is correct
5 Correct 14 ms 1020 KB Output is correct
6 Correct 8 ms 596 KB Output is correct
7 Correct 6 ms 344 KB Output is correct
8 Correct 7 ms 600 KB Output is correct
9 Correct 11 ms 812 KB Output is correct
10 Correct 15 ms 688 KB Output is correct
11 Correct 14 ms 1112 KB Output is correct
12 Correct 13 ms 1112 KB Output is correct
13 Correct 14 ms 856 KB Output is correct
14 Correct 8 ms 344 KB Output is correct
15 Correct 9 ms 344 KB Output is correct
16 Correct 9 ms 344 KB Output is correct
17 Correct 8 ms 344 KB Output is correct
18 Correct 9 ms 856 KB Output is correct
19 Correct 10 ms 552 KB Output is correct
20 Correct 10 ms 604 KB Output is correct
21 Correct 7 ms 344 KB Output is correct
22 Correct 7 ms 344 KB Output is correct
23 Correct 7 ms 344 KB Output is correct
24 Correct 7 ms 344 KB Output is correct
25 Correct 7 ms 344 KB Output is correct
26 Correct 9 ms 500 KB Output is correct
27 Correct 11 ms 500 KB Output is correct
28 Correct 10 ms 500 KB Output is correct
29 Correct 9 ms 552 KB Output is correct
30 Correct 10 ms 552 KB Output is correct
31 Correct 9 ms 600 KB Output is correct
32 Correct 11 ms 344 KB Output is correct
33 Correct 8 ms 344 KB Output is correct
34 Correct 9 ms 344 KB Output is correct
35 Correct 10 ms 452 KB Output is correct
36 Correct 9 ms 460 KB Output is correct
37 Correct 10 ms 516 KB Output is correct
38 Correct 11 ms 496 KB Output is correct
39 Correct 11 ms 504 KB Output is correct
40 Correct 10 ms 856 KB Output is correct
41 Correct 11 ms 556 KB Output is correct
42 Correct 13 ms 596 KB Output is correct
43 Correct 15 ms 676 KB Output is correct
44 Correct 14 ms 684 KB Output is correct
45 Correct 14 ms 1104 KB Output is correct
46 Correct 14 ms 680 KB Output is correct
47 Correct 16 ms 852 KB Output is correct
48 Correct 17 ms 916 KB Output is correct
49 Correct 15 ms 940 KB Output is correct
50 Correct 15 ms 856 KB Output is correct
51 Correct 16 ms 936 KB Output is correct
52 Correct 16 ms 856 KB Output is correct
53 Correct 16 ms 936 KB Output is correct
54 Correct 20 ms 684 KB Output is correct
55 Correct 16 ms 1112 KB Output is correct
56 Correct 15 ms 932 KB Output is correct
57 Correct 16 ms 676 KB Output is correct
58 Correct 17 ms 856 KB Output is correct
59 Correct 16 ms 856 KB Output is correct
60 Correct 20 ms 684 KB Output is correct
61 Partially correct 16 ms 1104 KB Output is partially correct
62 Correct 16 ms 1112 KB Output is correct
63 Correct 16 ms 676 KB Output is correct
64 Correct 17 ms 856 KB Output is correct
65 Partially correct 18 ms 856 KB Output is partially correct
66 Partially correct 16 ms 856 KB Output is partially correct
67 Partially correct 20 ms 692 KB Output is partially correct
68 Partially correct 19 ms 856 KB Output is partially correct
69 Partially correct 16 ms 880 KB Output is partially correct
70 Correct 17 ms 856 KB Output is correct
71 Correct 14 ms 856 KB Output is correct
72 Correct 18 ms 680 KB Output is correct
73 Correct 18 ms 596 KB Output is correct
74 Partially correct 17 ms 856 KB Output is partially correct
75 Partially correct 17 ms 672 KB Output is partially correct
76 Partially correct 16 ms 856 KB Output is partially correct
77 Correct 15 ms 856 KB Output is correct
78 Correct 17 ms 1112 KB Output is correct
79 Partially correct 20 ms 1112 KB Output is partially correct
80 Partially correct 17 ms 892 KB Output is partially correct
81 Partially correct 18 ms 680 KB Output is partially correct
82 Partially correct 16 ms 856 KB Output is partially correct