Submission #978386

# Submission time Handle Problem Language Result Execution time Memory
978386 2024-05-09T07:44:07 Z Bodisha Mecho (IOI09_mecho) C++17
19 / 100
1000 ms 7716 KB
#include <bits/stdc++.h>
#define MAX_N 801

using namespace std;

int n, s;
char grid[MAX_N][MAX_N];
bool visited[MAX_N][MAX_N];
int beed[MAX_N][MAX_N];
int steps[MAX_N][MAX_N];

bool check(int t) {
    vector<pair<int, int>> hives;
    pair<int, int> mecho_pos, home_pos;
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            beed[i][j] = n * n;
            visited[i][j] = false;
            steps[i][j] = n * n;
            if(grid[i][j] == 'H') {
                hives.push_back({i, j});
            }
            if(grid[i][j] == 'M') {
                mecho_pos = {i, j};
            }
            if(grid[i][j] == 'D') {
                home_pos = {i, j};
            }
        }
    }
    queue<pair<int, int>> q;
    for(auto iter : hives) {
        visited[iter.first][iter.second] = true;
        beed[iter.first][iter.second] = 0;
        q.push(iter);
    }
    while(!q.empty()) {
        pair<int, int> curr = q.front(); 
        q.pop();
        if(curr.first + 1 < n && !visited[curr.first + 1][curr.second] && (grid[curr.first + 1][curr.second] == 'G' || grid[curr.first + 1][curr.second] == 'M')) {
            visited[curr.first + 1][curr.second] = true;
            beed[curr.first + 1][curr.second] = beed[curr.first][curr.second] + 1;
            q.push({curr.first + 1, curr.second});
        }
        if(curr.first - 1 >= 0 && !visited[curr.first - 1][curr.second] && (grid[curr.first - 1][curr.second] == 'G' || grid[curr.first - 1][curr.second] == 'M')) {
            visited[curr.first - 1][curr.second] = true;
            beed[curr.first - 1][curr.second] = beed[curr.first][curr.second] + 1;
            q.push({curr.first - 1, curr.second});
        }
        if(curr.second + 1 < n && !visited[curr.first][curr.second + 1] && (grid[curr.first][curr.second + 1] == 'G' || grid[curr.first][curr.second + 1] == 'M')) {
            visited[curr.first][curr.second + 1] = true;
            beed[curr.first][curr.second + 1] = beed[curr.first][curr.second] + 1;
            q.push({curr.first, curr.second + 1});
        }
        if(curr.second - 1 >= 0 && !visited[curr.first][curr.second - 1] && (grid[curr.first][curr.second - 1] == 'G' || grid[curr.first][curr.second - 1] == 'M')) {
            visited[curr.first][curr.second - 1] = true;
            beed[curr.first][curr.second - 1] = beed[curr.first][curr.second] + 1;
            q.push({curr.first, curr.second - 1});
        }
    }
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            visited[i][j] = false;
        }
    }
    visited[mecho_pos.first][mecho_pos.second] = true;
    steps[mecho_pos.first][mecho_pos.second] = 0;
    q.push(mecho_pos);
    while(!q.empty()) {
        pair<int, int> curr = q.front(); 
        q.pop();
        if(curr.first + 1 < n && !visited[curr.first + 1][curr.second] && (grid[curr.first + 1][curr.second] == 'G' || grid[curr.first + 1][curr.second] == 'M' || grid[curr.first + 1][curr.second] == 'D')) {
            visited[curr.first + 1][curr.second] = true;
            steps[curr.first + 1][curr.second] = steps[curr.first][curr.second] + 1;
            q.push({curr.first + 1, curr.second});
        }
        if(curr.first - 1 >= 0 && !visited[curr.first - 1][curr.second] && (grid[curr.first - 1][curr.second] == 'G' || grid[curr.first - 1][curr.second] == 'M' || grid[curr.first - 1][curr.second] == 'D')) {
            visited[curr.first - 1][curr.second] = true;
            steps[curr.first - 1][curr.second] = steps[curr.first][curr.second] + 1;
            q.push({curr.first - 1, curr.second});
        }
        if(curr.second + 1 < n && !visited[curr.first][curr.second + 1] && (grid[curr.first][curr.second + 1] == 'G' || grid[curr.first][curr.second + 1] == 'M' || grid[curr.first][curr.second + 1] == 'D')) {
            visited[curr.first][curr.second + 1] = true;
            steps[curr.first][curr.second + 1] = steps[curr.first][curr.second] + 1;
            q.push({curr.first, curr.second + 1});
        }
        if(curr.second - 1 >= 0 && !visited[curr.first][curr.second - 1] && (grid[curr.first][curr.second - 1] == 'G' || grid[curr.first][curr.second - 1] == 'M' || grid[curr.first][curr.second - 1] == 'D')) {
            visited[curr.first][curr.second - 1] = true;
            steps[curr.first][curr.second - 1] = steps[curr.first][curr.second] + 1;
            q.push({curr.first, curr.second - 1});
        }
    }
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            visited[i][j] = false;
        }
    }
    if(t + 1 > beed[mecho_pos.first][mecho_pos.second]) {
        return false;
    }
    queue<pair<pair<int, int>, int>> newq;
    visited[mecho_pos.first][mecho_pos.second] = true;
    newq.push({mecho_pos, 0});
    while(!newq.empty()) {
        pair<pair<int, int>, int> curr = newq.front(); 
        newq.pop();
        int tmp = t + 1 + ((curr.second + 1) / (s + 1));
        if(curr.first.first + 1 < n && tmp <= beed[curr.first.first + 1][curr.first.second] && !visited[curr.first.first + 1][curr.first.second] && (grid[curr.first.first + 1][curr.first.second] == 'G' || grid[curr.first.first + 1][curr.first.second] == 'M' || grid[curr.first.first + 1][curr.first.second] == 'D')) {
            visited[curr.first.first + 1][curr.first.second] = true;
            newq.push({{curr.first.first + 1, curr.first.second}, curr.second + 1});
        }
        if(curr.first.first - 1 >= 0 && tmp <= beed[curr.first.first - 1][curr.first.second] && !visited[curr.first.first - 1][curr.second] && (grid[curr.first.first - 1][curr.first.second] == 'G' || grid[curr.first.first - 1][curr.first.second] == 'M' || grid[curr.first.first - 1][curr.first.second] == 'D')) {
            visited[curr.first.first - 1][curr.first.second] = true;
            newq.push({{curr.first.first - 1, curr.first.second}, curr.second + 1});
        }
        if(curr.first.second + 1 < n && tmp <= beed[curr.first.first][curr.first.second + 1] && !visited[curr.first.first][curr.first.second + 1] && (grid[curr.first.first][curr.first.second + 1] == 'G' || grid[curr.first.first][curr.first.second + 1] == 'M' || grid[curr.first.first][curr.first.second + 1] == 'D')) {
            visited[curr.first.first][curr.first.second + 1] = true;
            newq.push({{curr.first.first, curr.first.second + 1}, curr.second + 1});
        }
        if(curr.first.second - 1 >= 0 && tmp <= beed[curr.first.first][curr.first.second - 1] && !visited[curr.first.first][curr.first.second - 1] && (grid[curr.first.first][curr.first.second - 1] == 'G' || grid[curr.first.first][curr.first.second - 1] == 'M' || grid[curr.first.first][curr.first.second - 1] == 'D')) {
            visited[curr.first.first][curr.first.second - 1] = true;
            newq.push({{curr.first.first, curr.first.second - 1}, curr.second + 1});
        }
    }
    return visited[home_pos.first][home_pos.second];
}

int main() {
    cin >> n >> s;
    for(int i = 0; i < n; i++) {
        string tmp;
        cin >> tmp;
        for(int j = 0; j < n; j++) {
            grid[i][j] = tmp[j];
        }
    }
    int l = 0, r = n * n + 1;
    int ans = -1;
    // true true true ... (true) false false
    while(l <= r) {
        int mid = l + (r - l) / 2;
        if(check(mid)) {
            ans = mid;
            l = mid + 1;
        } else {
            r = mid - 1;
        }
    }
    cout << ans;
    return 0;
}
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 2396 KB Output isn't correct
2 Incorrect 1 ms 2396 KB Output isn't correct
3 Incorrect 1 ms 2504 KB Output isn't correct
4 Incorrect 1 ms 2392 KB Output isn't correct
5 Correct 1 ms 2396 KB Output is correct
6 Incorrect 1 ms 2396 KB Output isn't correct
7 Execution timed out 1085 ms 7260 KB Time limit exceeded
8 Incorrect 1 ms 2396 KB Output isn't correct
9 Correct 1 ms 2396 KB Output is correct
10 Incorrect 1 ms 2396 KB Output isn't correct
11 Incorrect 1 ms 2396 KB Output isn't correct
12 Correct 2 ms 4696 KB Output is correct
13 Correct 2 ms 2652 KB Output is correct
14 Incorrect 3 ms 4700 KB Output isn't correct
15 Incorrect 1 ms 2396 KB Output isn't correct
16 Correct 1 ms 2396 KB Output is correct
17 Incorrect 1 ms 2396 KB Output isn't correct
18 Correct 1 ms 2396 KB Output is correct
19 Incorrect 1 ms 2492 KB Output isn't correct
20 Correct 1 ms 2396 KB Output is correct
21 Incorrect 1 ms 2496 KB Output isn't correct
22 Correct 1 ms 2652 KB Output is correct
23 Incorrect 1 ms 2652 KB Output isn't correct
24 Correct 1 ms 2652 KB Output is correct
25 Incorrect 2 ms 4700 KB Output isn't correct
26 Correct 2 ms 4700 KB Output is correct
27 Incorrect 2 ms 4832 KB Output isn't correct
28 Correct 2 ms 4696 KB Output is correct
29 Incorrect 2 ms 4696 KB Output isn't correct
30 Correct 2 ms 4700 KB Output is correct
31 Incorrect 2 ms 4700 KB Output isn't correct
32 Correct 3 ms 4700 KB Output is correct
33 Incorrect 39 ms 5212 KB Output isn't correct
34 Correct 30 ms 5208 KB Output is correct
35 Correct 343 ms 5404 KB Output is correct
36 Incorrect 56 ms 5212 KB Output isn't correct
37 Correct 39 ms 5208 KB Output is correct
38 Correct 357 ms 5684 KB Output is correct
39 Incorrect 70 ms 5464 KB Output isn't correct
40 Correct 50 ms 5464 KB Output is correct
41 Correct 384 ms 5984 KB Output is correct
42 Incorrect 88 ms 5464 KB Output isn't correct
43 Correct 60 ms 5672 KB Output is correct
44 Correct 501 ms 6116 KB Output is correct
45 Incorrect 110 ms 5724 KB Output isn't correct
46 Correct 73 ms 5724 KB Output is correct
47 Correct 560 ms 6252 KB Output is correct
48 Incorrect 131 ms 5980 KB Output isn't correct
49 Correct 91 ms 5980 KB Output is correct
50 Correct 626 ms 6408 KB Output is correct
51 Incorrect 153 ms 6308 KB Output isn't correct
52 Correct 106 ms 6236 KB Output is correct
53 Correct 635 ms 6740 KB Output is correct
54 Incorrect 182 ms 6508 KB Output isn't correct
55 Correct 124 ms 6572 KB Output is correct
56 Correct 596 ms 7044 KB Output is correct
57 Incorrect 204 ms 6780 KB Output isn't correct
58 Correct 141 ms 6736 KB Output is correct
59 Correct 601 ms 7044 KB Output is correct
60 Incorrect 244 ms 7140 KB Output isn't correct
61 Correct 161 ms 7000 KB Output is correct
62 Incorrect 443 ms 7508 KB Output isn't correct
63 Incorrect 464 ms 7028 KB Output isn't correct
64 Incorrect 478 ms 7076 KB Output isn't correct
65 Incorrect 467 ms 7256 KB Output isn't correct
66 Incorrect 462 ms 7084 KB Output isn't correct
67 Correct 475 ms 7124 KB Output is correct
68 Incorrect 426 ms 7004 KB Output isn't correct
69 Incorrect 441 ms 7252 KB Output isn't correct
70 Incorrect 443 ms 7160 KB Output isn't correct
71 Incorrect 441 ms 7168 KB Output isn't correct
72 Correct 436 ms 7152 KB Output is correct
73 Correct 600 ms 7680 KB Output is correct
74 Execution timed out 1065 ms 7556 KB Time limit exceeded
75 Execution timed out 1025 ms 7448 KB Time limit exceeded
76 Execution timed out 1016 ms 7484 KB Time limit exceeded
77 Execution timed out 1069 ms 7624 KB Time limit exceeded
78 Execution timed out 1077 ms 7640 KB Time limit exceeded
79 Execution timed out 1049 ms 7584 KB Time limit exceeded
80 Execution timed out 1098 ms 7468 KB Time limit exceeded
81 Execution timed out 1059 ms 7532 KB Time limit exceeded
82 Execution timed out 1022 ms 7616 KB Time limit exceeded
83 Execution timed out 1066 ms 7352 KB Time limit exceeded
84 Correct 970 ms 7432 KB Output is correct
85 Incorrect 875 ms 7508 KB Output isn't correct
86 Execution timed out 1031 ms 7256 KB Time limit exceeded
87 Execution timed out 1025 ms 7660 KB Time limit exceeded
88 Execution timed out 1039 ms 7644 KB Time limit exceeded
89 Execution timed out 1031 ms 7248 KB Time limit exceeded
90 Execution timed out 1049 ms 7316 KB Time limit exceeded
91 Execution timed out 1006 ms 7716 KB Time limit exceeded
92 Execution timed out 1092 ms 7508 KB Time limit exceeded