# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
976749 |
2024-05-07T05:16:14 Z |
vermeil |
Lonely mdic (kriii1_L) |
C++17 |
|
2000 ms |
480 KB |
#include <bits/stdc++.h>
using namespace std;
#define ll int
#define pll std::pair<ll,ll>
#define rep(i,a,b) for(ll i=(ll)a;i<(ll)b;i++)
#define per(i,a,b) for(ll i=(ll)a;i>(ll)b;i--)
#define F first
#define S second
#define pb push_back
#define mp make_pair
#define full(a) a.begin(),a.end()
#define rfull(a) a.rbegin(),a.rend()
using namespace std;
const double pi=acos(-1.0);
const double pii=2*pi;
const double eps=1e-13;
inline double sq(double a){ return a*a;};
inline double parg(double d){
if(d>=pii){
d-=pii;
}
return d;
}
bool inter(int i,int j,std::vector<double>& x,std::vector<double>& y,std::vector<double>& r){
double d = std::sqrt(sq(x[i]-x[j])+sq(y[i]-y[j]));
if(d>r[i]+r[j] || std::abs(r[i]-r[j])>=d){
return false;
}
return true;
}
void quadratic(double a,double b,double c,double& x1,double& x2){
x1 = (-b-std::sqrt(sq(b)-4*a*c))/(2*a);
x2 = (-b+std::sqrt(sq(b)-4*a*c))/(2*a);
}
void lyx(double a,double b,double c,double& x, double& y){
if(b){
y=(c-a*x)/b;
}
}
bool lcf(double x,double y,double r,double a,double b, double c,std::vector<double>& ans){
double x1,x2,y1,y2;
if(b)
{
quadratic(1+sq(a/b),-2*x-2*(a/b)*(c/b-y),sq(x)+sq(c/b-y)-sq(r),x1,x2);
lyx(a,b,c,x1,y1);
lyx(a,b,c,x2,y2);
ans = {x1,y1,x2,y2};
}
else{
quadratic(1,-2*y,sq(y)+sq(c/a-x)-sq(r),y1,y2);
x1=c/a;
ans={x1,y1,x1,y2};
}
return true;
}
inline double gth(double x,double y){
if(x>0.0&&y==0.0){ return 0.0;}
if(x>0.0&&y>0.0){ return std::atan(y/x);}
if(x==0.0&&y>0){ return pi/2.0;}
if(x<0.0&&y>0.0){ return pi-std::atan(std::abs(y/x));}
if(x<0.0&&y==0.0){ return pi;}
if(x<0.0&&y<0.0){ return pi+std::atan(std::abs(y/x));}
if(x==0.0&&y<0.0){ return 1.5*pi;}
if(x>0.0&&y<0.0){ return pii-std::atan(std::abs(y/x));}
return 0.0;
}
inline double f1(double x,double y, double r, double theta){
return r*(x*std::sin(theta))+ sq(r)*(theta+std::sin(theta)*std::cos(theta))*0.5;
}
double f(int n,std::vector<double> &x,std::vector<double> &y,std::vector<double> &r){
double ans;
rep(i,0,n){
std::vector<std::pair<double,double>> iPnts{};
rep(j,0,n){
if(i!=j&&inter(i,j,x,y,r)){
std::vector<double> ans(4,0.0);
lcf(x[i],y[i],r[i],2*(x[j]-x[i]),2*(y[j]-y[i]),sq(r[i])-sq(r[j])+sq(x[j])-sq(x[i])+sq(y[j])-sq(y[i]),ans);
double theta1=gth(ans[0]-x[i],ans[1]-y[i]), theta2=gth(ans[2]-x[i],ans[3]-y[i]);
if(theta1>theta2){ std::swap(theta1,theta2);}
if(sq(x[j]-x[i]-r[i]*std::cos((theta1+theta2)/2.0))+sq(y[j]-y[i]-r[i]*std::sin((theta1+theta2)/2.0))<sq(r[j])){
iPnts.pb({theta1,theta2});
}
else{
if(sq(x[j]-x[i]-r[i]*std::cos(parg((theta1+theta2)/2.0+pi)))+sq(y[j]-y[i]-r[i]*std::sin(parg((theta1+theta2)/2.0+pi)))<sq(r[j])){
iPnts.pb({theta2,pii});
iPnts.pb({0.0,theta1});
}
}
}
}
if(iPnts.size()==0){
ans+=pi*sq(r[i]);
}
else{
std::sort(full(iPnts));
double theta1=iPnts[0].F,theta2=iPnts[0].S;
std::vector<std::pair<double,double>> intlims{{0.0,theta1}};
rep(j,0,iPnts.size()){
while(j<iPnts.size()&&theta2>=iPnts[j].F){
theta2=std::max(iPnts[j].S,theta2);
j++;
}
if(j<iPnts.size()){
intlims.pb({theta2,iPnts[j].F});
theta1=iPnts[j].F;
theta2=iPnts[j].S;
}
}
intlims.pb({theta2,pii});
rep(j,0,intlims.size()){
if(!(intlims[j].F==0.0&&intlims[j].S==pii)&&(intlims[j].F!=intlims[j].S)){
ans+=(f1(x[i],y[i],r[i],intlims[j].S)-f1(x[i],y[i],r[i],intlims[j].F));
}
}
}
}
return ans;
}
inline bool f4(int j,int i,std::vector<double>& x,std::vector<double>& y,std::vector<double>& r){
return (j!=i && (std::sqrt(sq(x[i]-x[j])+sq(y[i]-y[j]))+r[j])<=r[i])? true:false;
}
double xx[303], yy[303], rr[303];
double solve(vector<double> &xp, vector<double> &yp, vector<double> &rp){
int n = xp.size();
vector<double> x{}, y{}, r{};
std::vector<bool> in(n,true);
rep(i,0,n){
rep(j,0,n){
if(in[i]&&f4(j,i,xp,yp,rp)){
in[j]=false;
}
}
}
rep(i,0,n){
if(in[i]){
x.pb(xp[i]);
y.pb(yp[i]);
r.pb(rp[i]);
}
}
return f(x.size(),x,y,r);
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin>>n;
rep(i,0,n){
cin>>xx[i]>>yy[i]>>rr[i];
}
vector<double> x1, y1, r1;
rep(i,0,n){
x1.push_back(xx[i]);
y1.push_back(yy[i]);
r1.push_back(rr[i]);
}
double mx = solve(x1, y1, r1);
int ans = 0;
rep(i,0,n){
x1.clear();
y1.clear();
r1.clear();
rep(j,0,n){
if(i==j)continue;
x1.push_back(xx[j]);
y1.push_back(yy[j]);
r1.push_back(rr[j]);
}
if (abs(mx - solve(x1, y1, r1)) <= 1e-5) ans++;
}
cout<<ans;
return 0;
}
Compilation message
L.cpp: In function 'double f(int, std::vector<double>&, std::vector<double>&, std::vector<double>&)':
L.cpp:115:24: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<double, double> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
115 | while(j<iPnts.size()&&theta2>=iPnts[j].F){
| ~^~~~~~~~~~~~~
L.cpp:119:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<double, double> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
119 | if(j<iPnts.size()){
| ~^~~~~~~~~~~~~
L.cpp:134:12: warning: 'ans' may be used uninitialized in this function [-Wmaybe-uninitialized]
134 | return ans;
| ^~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
19 ms |
348 KB |
Output is correct |
2 |
Correct |
14 ms |
348 KB |
Output is correct |
3 |
Correct |
125 ms |
472 KB |
Output is correct |
4 |
Correct |
127 ms |
344 KB |
Output is correct |
5 |
Correct |
180 ms |
480 KB |
Output is correct |
6 |
Correct |
173 ms |
476 KB |
Output is correct |
7 |
Execution timed out |
2024 ms |
344 KB |
Time limit exceeded |
8 |
Halted |
0 ms |
0 KB |
- |