Submission #971836

# Submission time Handle Problem Language Result Execution time Memory
971836 2024-04-29T11:25:26 Z GrindMachine Dancing Elephants (IOI11_elephants) C++17
100 / 100
3876 ms 28296 KB
#pragma GCC optimize("O3,unroll-loops")

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 2e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
const int B = 355;

#include "elephants.h"

int n,L;
vector<int> a;
set<pii> st;
vector<pii> blocks[N/B+5];
vector<int> block_num, cams, mx_point;

void upd_block(int b){
    if(blocks[b].empty()) return;
    auto &curr = blocks[b];
    int siz = sz(curr);
    int ptr = siz-1;
    rev(i,siz-1,0){
        while(curr[ptr].ff-curr[i].ff > L){
            ptr--;
        }

        int j = curr[i].ss;

        if(ptr+1 == siz){
            cams[j] = 1;
            mx_point[j] = curr[i].ff+L;
        }
        else{
            int k = curr[ptr+1].ss;
            cams[j] = cams[k]+1;
            mx_point[j] = mx_point[k];
        }
    }
}

void build(){
    int ind = 0;
    rep(i,n/B+1){
        blocks[i].clear();
    }

    for(auto [x,i] : st){
        blocks[ind/B].pb({x,i});
        block_num[i] = ind/B;
        ind++;
    }

    rep(b,n/B+1){
        upd_block(b);
    }
}

void init(int n_, int L_, int X[])
{
    n = n_;
    L = L_;
    a = block_num = cams = mx_point = vector<int>(n);
    rep(i,n) a[i] = X[i];
    rep(i,n) st.insert({a[i],i});
    build();
}

int upds = 0;

int update(int i, int v)
{
    upds++;
    if(upds%B == 0){
        build();
    }

    int b = block_num[i];

    {
        auto &curr = blocks[b];
        pii px = {a[i],i};
        curr.erase(find(all(curr),px));
        upd_block(b);
    }

    st.erase({a[i],i});
    a[i] = v;
    st.insert({a[i],i});
    auto it = st.find({a[i],i});

    if(next(it) != st.end()){
        b = block_num[next(it)->ss];
    }
    else if(it != st.begin()){
        b = block_num[prev(it)->ss];
    }
    else{
        b = 0;
    }

    block_num[i] = b;

    {
        auto &curr = blocks[b];
        pii px = {a[i],i};
        curr.insert(upper_bound(all(curr),px),px);
        upd_block(b);
    }

    int mx_reach = -1;
    int ans = 0;

    rep(b,n/B+1){
        auto &curr = blocks[b];
        pii px = {mx_reach+1,-1};
        auto it = upper_bound(all(curr),px);
        if(it == curr.end()){
            conts;
        }

        int j = it->second;
        ans += cams[j];
        mx_reach = mx_point[j];
    }  

    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 2 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 2 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6488 KB Output is correct
7 Correct 191 ms 10592 KB Output is correct
8 Correct 171 ms 11056 KB Output is correct
9 Correct 275 ms 13792 KB Output is correct
10 Correct 282 ms 13400 KB Output is correct
11 Correct 290 ms 13544 KB Output is correct
12 Correct 511 ms 13648 KB Output is correct
13 Correct 280 ms 13288 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 2 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6488 KB Output is correct
7 Correct 191 ms 10592 KB Output is correct
8 Correct 171 ms 11056 KB Output is correct
9 Correct 275 ms 13792 KB Output is correct
10 Correct 282 ms 13400 KB Output is correct
11 Correct 290 ms 13544 KB Output is correct
12 Correct 511 ms 13648 KB Output is correct
13 Correct 280 ms 13288 KB Output is correct
14 Correct 277 ms 11220 KB Output is correct
15 Correct 272 ms 11552 KB Output is correct
16 Correct 789 ms 13652 KB Output is correct
17 Correct 962 ms 15536 KB Output is correct
18 Correct 973 ms 15292 KB Output is correct
19 Correct 420 ms 15188 KB Output is correct
20 Correct 915 ms 15284 KB Output is correct
21 Correct 837 ms 15288 KB Output is correct
22 Correct 476 ms 15028 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 2 ms 6492 KB Output is correct
4 Correct 2 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6488 KB Output is correct
7 Correct 191 ms 10592 KB Output is correct
8 Correct 171 ms 11056 KB Output is correct
9 Correct 275 ms 13792 KB Output is correct
10 Correct 282 ms 13400 KB Output is correct
11 Correct 290 ms 13544 KB Output is correct
12 Correct 511 ms 13648 KB Output is correct
13 Correct 280 ms 13288 KB Output is correct
14 Correct 277 ms 11220 KB Output is correct
15 Correct 272 ms 11552 KB Output is correct
16 Correct 789 ms 13652 KB Output is correct
17 Correct 962 ms 15536 KB Output is correct
18 Correct 973 ms 15292 KB Output is correct
19 Correct 420 ms 15188 KB Output is correct
20 Correct 915 ms 15284 KB Output is correct
21 Correct 837 ms 15288 KB Output is correct
22 Correct 476 ms 15028 KB Output is correct
23 Correct 2317 ms 26832 KB Output is correct
24 Correct 2642 ms 26828 KB Output is correct
25 Correct 2069 ms 26828 KB Output is correct
26 Correct 2397 ms 28112 KB Output is correct
27 Correct 2256 ms 28112 KB Output is correct
28 Correct 724 ms 15776 KB Output is correct
29 Correct 698 ms 15784 KB Output is correct
30 Correct 735 ms 15700 KB Output is correct
31 Correct 738 ms 15780 KB Output is correct
32 Correct 1852 ms 27868 KB Output is correct
33 Correct 2013 ms 27108 KB Output is correct
34 Correct 1910 ms 27860 KB Output is correct
35 Correct 2058 ms 28120 KB Output is correct
36 Correct 2397 ms 26824 KB Output is correct
37 Correct 3604 ms 28296 KB Output is correct
38 Correct 1976 ms 26328 KB Output is correct
39 Correct 1737 ms 26748 KB Output is correct
40 Correct 1908 ms 26332 KB Output is correct
41 Correct 3876 ms 26964 KB Output is correct
42 Correct 3670 ms 25296 KB Output is correct