Submission #971835

# Submission time Handle Problem Language Result Execution time Memory
971835 2024-04-29T11:24:53 Z GrindMachine Dancing Elephants (IOI11_elephants) C++17
100 / 100
4431 ms 27952 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 2e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
const int B = 355;

#include "elephants.h"

int n,L;
vector<int> a;
set<pii> st;
vector<pii> blocks[N/B+5];
vector<int> block_num, cams, mx_point;

void upd_block(int b){
    if(blocks[b].empty()) return;
    auto &curr = blocks[b];
    int siz = sz(curr);
    int ptr = siz-1;
    rev(i,siz-1,0){
        while(curr[ptr].ff-curr[i].ff > L){
            ptr--;
        }

        int j = curr[i].ss;

        if(ptr+1 == siz){
            cams[j] = 1;
            mx_point[j] = curr[i].ff+L;
        }
        else{
            int k = curr[ptr+1].ss;
            cams[j] = cams[k]+1;
            mx_point[j] = mx_point[k];
        }
    }
}

void build(){
    int ind = 0;
    rep(i,n/B+1){
        blocks[i].clear();
    }

    for(auto [x,i] : st){
        blocks[ind/B].pb({x,i});
        block_num[i] = ind/B;
        ind++;
    }

    rep(b,n/B+1){
        upd_block(b);
    }
}

void init(int n_, int L_, int X[])
{
    n = n_;
    L = L_;
    a = block_num = cams = mx_point = vector<int>(n);
    rep(i,n) a[i] = X[i];
    rep(i,n) st.insert({a[i],i});
    build();
}

int upds = 0;

int update(int i, int v)
{
    upds++;
    if(upds%B == 0){
        build();
    }

    int b = block_num[i];

    {
        auto &curr = blocks[b];
        pii px = {a[i],i};
        curr.erase(find(all(curr),px));
        upd_block(b);
    }

    st.erase({a[i],i});
    a[i] = v;
    st.insert({a[i],i});
    auto it = st.find({a[i],i});

    if(next(it) != st.end()){
        b = block_num[next(it)->ss];
    }
    else if(it != st.begin()){
        b = block_num[prev(it)->ss];
    }
    else{
        b = 0;
    }

    block_num[i] = b;

    {
        auto &curr = blocks[b];
        pii px = {a[i],i};
        curr.insert(upper_bound(all(curr),px),px);
        upd_block(b);
    }

    int mx_reach = -1;
    int ans = 0;

    rep(b,n/B+1){
        auto &curr = blocks[b];
        pii px = {mx_reach+1,-1};
        auto it = upper_bound(all(curr),px);
        if(it == curr.end()){
            conts;
        }

        int j = it->second;
        ans += cams[j];
        mx_reach = mx_point[j];
    }  

    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
7 Correct 178 ms 9832 KB Output is correct
8 Correct 186 ms 10176 KB Output is correct
9 Correct 258 ms 12512 KB Output is correct
10 Correct 277 ms 12516 KB Output is correct
11 Correct 283 ms 12372 KB Output is correct
12 Correct 527 ms 12376 KB Output is correct
13 Correct 296 ms 12524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
7 Correct 178 ms 9832 KB Output is correct
8 Correct 186 ms 10176 KB Output is correct
9 Correct 258 ms 12512 KB Output is correct
10 Correct 277 ms 12516 KB Output is correct
11 Correct 283 ms 12372 KB Output is correct
12 Correct 527 ms 12376 KB Output is correct
13 Correct 296 ms 12524 KB Output is correct
14 Correct 274 ms 10072 KB Output is correct
15 Correct 298 ms 10576 KB Output is correct
16 Correct 789 ms 12628 KB Output is correct
17 Correct 860 ms 14248 KB Output is correct
18 Correct 908 ms 14164 KB Output is correct
19 Correct 459 ms 14004 KB Output is correct
20 Correct 851 ms 14008 KB Output is correct
21 Correct 858 ms 14028 KB Output is correct
22 Correct 455 ms 14004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6488 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
7 Correct 178 ms 9832 KB Output is correct
8 Correct 186 ms 10176 KB Output is correct
9 Correct 258 ms 12512 KB Output is correct
10 Correct 277 ms 12516 KB Output is correct
11 Correct 283 ms 12372 KB Output is correct
12 Correct 527 ms 12376 KB Output is correct
13 Correct 296 ms 12524 KB Output is correct
14 Correct 274 ms 10072 KB Output is correct
15 Correct 298 ms 10576 KB Output is correct
16 Correct 789 ms 12628 KB Output is correct
17 Correct 860 ms 14248 KB Output is correct
18 Correct 908 ms 14164 KB Output is correct
19 Correct 459 ms 14004 KB Output is correct
20 Correct 851 ms 14008 KB Output is correct
21 Correct 858 ms 14028 KB Output is correct
22 Correct 455 ms 14004 KB Output is correct
23 Correct 2596 ms 24012 KB Output is correct
24 Correct 2503 ms 24008 KB Output is correct
25 Correct 1830 ms 24020 KB Output is correct
26 Correct 2289 ms 24028 KB Output is correct
27 Correct 2037 ms 24020 KB Output is correct
28 Correct 724 ms 13396 KB Output is correct
29 Correct 715 ms 13164 KB Output is correct
30 Correct 714 ms 13136 KB Output is correct
31 Correct 694 ms 13224 KB Output is correct
32 Correct 2031 ms 24032 KB Output is correct
33 Correct 1923 ms 24020 KB Output is correct
34 Correct 1969 ms 24020 KB Output is correct
35 Correct 1979 ms 24028 KB Output is correct
36 Correct 2222 ms 26572 KB Output is correct
37 Correct 3637 ms 27952 KB Output is correct
38 Correct 2131 ms 26076 KB Output is correct
39 Correct 2005 ms 26576 KB Output is correct
40 Correct 2101 ms 26068 KB Output is correct
41 Correct 4431 ms 26588 KB Output is correct
42 Correct 4243 ms 26584 KB Output is correct