#include <bits/stdc++.h>
#define MAX_D 4000
#define MAX_D 4000
using namespace std;
int h, w;
char meadow[MAX_D][MAX_D];
int component[MAX_D][MAX_D];
vector<int> graph[MAX_D * MAX_D];
int d[MAX_D * MAX_D];
queue<int> q;
void floodfill(int x, int y, int cmp) {
stack<pair<int, int>> s;
component[x][y] = cmp;
s.push({x, y});
while(!s.empty()) {
pair<int, int> curr = s.top();
s.pop();
if(curr.first + 1 < h && meadow[curr.first][curr.second] == meadow[curr.first + 1][curr.second] && component[curr.first + 1][curr.second] == 0) {
component[curr.first + 1][curr.second] = cmp;
s.push({curr.first + 1, curr.second});
}
if(curr.first - 1 >= 0 && meadow[curr.first][curr.second] == meadow[curr.first - 1][curr.second] && component[curr.first - 1][curr.second] == 0) {
component[curr.first - 1][curr.second] = cmp;
s.push({curr.first - 1, curr.second});
}
if(curr.second + 1 < w && meadow[curr.first][curr.second] == meadow[curr.first][curr.second + 1] && component[curr.first][curr.second + 1] == 0) {
component[curr.first][curr.second + 1] = cmp;
s.push({curr.first, curr.second + 1});
}
if(curr.second - 1 >= 0 && meadow[curr.first][curr.second] == meadow[curr.first][curr.second - 1] && component[curr.first][curr.second - 1] == 0) {
component[curr.first][curr.second - 1] = cmp;
s.push({curr.first, curr.second - 1});
}
}
}
int main() {
string tmps;
cin >> h >> w;
for(int i = 0; i < h; i++) {
cin >> tmps;
for(int j = 0; j < w; j++) {
meadow[i][j] = tmps[j];
}
}
int cnt = 1;
for(int i = 0; i < h; i++) {
for(int j = 0; j < w; j++) {
if(component[i][j] == 0 && meadow[i][j] != '.') {
floodfill(i, j, cnt);
cnt++;
}
}
}
for(int i = 0; i < h; i++) {
for(int j = 0; j < w; j++) {
if(meadow[i][j] == '.') {
continue;
}
if(i + 1 < h && meadow[i + 1][j] != '.' && component[i + 1][j] != component[i][j]) {
graph[component[i + 1][j]].push_back(component[i][j]);
graph[component[i][j]].push_back(component[i + 1][j]);
}
if(i - 1 >= 0 && meadow[i - 1][j] != '.' && component[i - 1][j] != component[i][j]) {
graph[component[i - 1][j]].push_back(component[i][j]);
graph[component[i][j]].push_back(component[i - 1][j]);
}
if(j + 1 < w && meadow[i][j + 1] != '.' && component[i][j + 1] != component[i][j]) {
graph[component[i][j + 1]].push_back(component[i][j]);
graph[component[i][j]].push_back(component[i][j + 1]);
}
if(j - 1 >= 0 && meadow[i][j - 1] != '.' && component[i][j - 1] != component[i][j]) {
graph[component[i][j - 1]].push_back(component[i][j]);
graph[component[i][j]].push_back(component[i][j - 1]);
}
}
}
fill(d, d + cnt, -1);
d[component[0][0]] = 0;
q.push(component[0][0]);
while(!q.empty()) {
int curr_node = q.front();
q.pop();
for(auto iter : graph[curr_node]) {
if(d[iter] == -1) {
d[iter] = d[curr_node] + 1;
q.push(iter);
}
}
}
int ans = 1;
for(int i = 0; i < cnt; i++) {
ans = max(ans, d[i] + 1);
}
cout << ans;
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
241 ms |
387156 KB |
Output is correct |
2 |
Correct |
110 ms |
377168 KB |
Output is correct |
3 |
Correct |
109 ms |
377256 KB |
Output is correct |
4 |
Correct |
121 ms |
382412 KB |
Output is correct |
5 |
Correct |
115 ms |
380192 KB |
Output is correct |
6 |
Correct |
120 ms |
377168 KB |
Output is correct |
7 |
Correct |
111 ms |
377228 KB |
Output is correct |
8 |
Correct |
113 ms |
377604 KB |
Output is correct |
9 |
Correct |
114 ms |
377940 KB |
Output is correct |
10 |
Correct |
116 ms |
379588 KB |
Output is correct |
11 |
Correct |
113 ms |
378964 KB |
Output is correct |
12 |
Correct |
122 ms |
381524 KB |
Output is correct |
13 |
Correct |
115 ms |
379960 KB |
Output is correct |
14 |
Correct |
113 ms |
379960 KB |
Output is correct |
15 |
Correct |
137 ms |
385668 KB |
Output is correct |
16 |
Correct |
140 ms |
387132 KB |
Output is correct |
17 |
Correct |
130 ms |
383912 KB |
Output is correct |
18 |
Correct |
122 ms |
382280 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
126 ms |
407376 KB |
Output is correct |
2 |
Correct |
220 ms |
404048 KB |
Output is correct |
3 |
Correct |
802 ms |
510884 KB |
Output is correct |
4 |
Correct |
263 ms |
416536 KB |
Output is correct |
5 |
Correct |
897 ms |
579852 KB |
Output is correct |
6 |
Correct |
1052 ms |
554164 KB |
Output is correct |
7 |
Correct |
127 ms |
408916 KB |
Output is correct |
8 |
Correct |
127 ms |
407376 KB |
Output is correct |
9 |
Correct |
115 ms |
377680 KB |
Output is correct |
10 |
Correct |
113 ms |
377012 KB |
Output is correct |
11 |
Correct |
129 ms |
408140 KB |
Output is correct |
12 |
Correct |
121 ms |
378576 KB |
Output is correct |
13 |
Correct |
221 ms |
404032 KB |
Output is correct |
14 |
Correct |
176 ms |
394312 KB |
Output is correct |
15 |
Correct |
176 ms |
393964 KB |
Output is correct |
16 |
Correct |
168 ms |
389456 KB |
Output is correct |
17 |
Correct |
437 ms |
436580 KB |
Output is correct |
18 |
Correct |
358 ms |
427760 KB |
Output is correct |
19 |
Correct |
277 ms |
416508 KB |
Output is correct |
20 |
Correct |
287 ms |
417620 KB |
Output is correct |
21 |
Correct |
534 ms |
465860 KB |
Output is correct |
22 |
Correct |
933 ms |
579864 KB |
Output is correct |
23 |
Correct |
678 ms |
481964 KB |
Output is correct |
24 |
Correct |
561 ms |
472712 KB |
Output is correct |
25 |
Correct |
1234 ms |
535304 KB |
Output is correct |
26 |
Correct |
651 ms |
507476 KB |
Output is correct |
27 |
Correct |
707 ms |
478128 KB |
Output is correct |
28 |
Correct |
1063 ms |
553808 KB |
Output is correct |
29 |
Correct |
985 ms |
539476 KB |
Output is correct |
30 |
Correct |
887 ms |
513316 KB |
Output is correct |
31 |
Correct |
1426 ms |
679992 KB |
Output is correct |
32 |
Correct |
682 ms |
470408 KB |
Output is correct |