Submission #960248

#TimeUsernameProblemLanguageResultExecution timeMemory
960248josanneo22Cyberland (APIO23_cyberland)C++17
100 / 100
325 ms123612 KiB
#include <bits/stdc++.h> using namespace std; struct dsu { vector<int> fa, sz; dsu(int n) { fa.resize(n + 10); iota(fa.begin(), fa.end(), 0); sz.assign(n + 10, 1); } int find(int x) { while (x != fa[x]) x = fa[x] = fa[fa[x]]; return x; } bool merge(int x, int y) { int px = find(x), py = find(y); if (px == py) return false; if (sz[py] > sz[px]) swap(px, py); sz[px] += sz[py]; fa[py] = px; return true; } bool same(int x, int y) { int px = find(x), py = find(y); return px == py; } }; #include "cyberland.h" #define ld long double double solve(int N, int M, int K, int H, vector<int> fir, vector<int> sec, vector<int> co, vector<int> arr) { K = min(K, 69); vector<vector<pair<int,int>>> g(N); dsu ds(N); for (int i = 0; i < M; i++) { if (fir[i] != H && sec[i] != H) ds.merge(fir[i], sec[i]); // merging g[fir[i]].push_back(make_pair(co[i], sec[i])); g[sec[i]].push_back(make_pair(co[i], fir[i])); // add the edges } vector<ld> pwr(K + 1, 1); // precompute the values (divided by) when getting powers of 2 for (int i = 1; i <= K; i++) { pwr[i] = pwr[i - 1] / 2; } arr[0] = 0; // make node 0 with type 0 vector<vector<ld>> dist(K + 1, vector<ld>(N, 1E18)); using node = tuple<ld, int, int>; // make a tuple of 3 numbers priority_queue<node, vector<node>, greater<node>> pq; auto enq = [&](int k, int x, ld d) { // updates and push into queue if it is better if (dist[k][x] > d) { dist[k][x] = d; pq.push({ d,k,x }); } }; enq(K, H, 0); // start from node H with K unused power 2 abilities while (pq.size()) { auto [d, k, x] = pq.top(); pq.pop(); if (dist[k][x] < d) continue; if (arr[x] == 0) return (double)d; // if we reach a node with type 0 // means that we can always go from node 0 -> x -> H // with the use of Dijkstra, we know that our first encounter is the shortest time for (auto& [c, v] : g[x]) { if (ds.find(v) != ds.find(0)) continue; // if not connected with node 0 enq(k, v, d + c * pwr[K - k]); // don't use power 2 if (arr[x] == 2 && k > 0) // if we have remaining and current node has type 2 enq(k - 1, v, d + c * pwr[K - k + 1]); // use power 2 } } return (double)-1; // returns impossible }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...