// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define size(x) (int)x.size()
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef __int128_t lll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;
// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);
void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }
inline char gc()
{
const static int SZ = 1 << 16;
static char buf[SZ], *p1, *p2;
if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
return -1;
return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
x = 0;
bool f = 0;
char c = gc();
while (!isdigit(c))
f ^= !(c ^ 45), c = gc();
while (isdigit(c))
x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
f && (x = -x), rd(y...);
}
template <typename T>
void prt(T x)
{
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
prt(x / 10);
putchar((x % 10) ^ 48);
}
const llt MX = 1ll << 60;
const int N = 1e5 + 5;
struct P
{
llt sum;
int ans;
vector<llt> lsm, rsm, lnd, rnd;
vector<int> lnb, rnb;
inline void ini(int v)
{
sum = v, ans = 1;
lsm = rsm = vector<llt>(1, 0);
lnd = rnd = vector<llt>(1, v);
lnb = rnb = vector<int>(1, 0);
}
} tr[N << 1];
P operator+(P &l, P &r)
{
P p;
int slr = size(l.rnd), srl = size(r.lnd);
p.sum = l.sum + r.sum, p.ans = 0;
p.lsm = l.lsm, p.rsm = r.rsm;
p.lnd = l.lnd, p.rnd = r.rnd;
p.lnb = l.lnb, p.rnb = r.rnb;
for (int i = 0; i < srl; i++)
if (r.lnd[i] > l.sum)
p.lnd.pb(r.lnd[i] - l.sum), p.lsm.pb(r.lsm[i] + l.sum);
p.lnb.resize(size(p.lnd), 0);
if (size(p.lnd) > size(l.lnd))
p.lnb[size(l.lnd)] = l.ans;
else
p.ans += l.ans;
for (int i = 0; i < slr; i++)
if (l.rnd[i] > r.sum)
p.rnd.pb(l.rnd[i] - r.sum), p.rsm.pb(l.rsm[i] + r.sum);
p.rnb.resize(size(p.rnd), 0);
if (size(p.rnd) > size(r.rnd))
p.rnb[size(r.rnd)] = r.ans;
else
p.ans += r.ans;
l.rnb.pb(0), l.rnd.pb(MX), l.rsm.pb(l.sum);
r.lnb.pb(0), r.lnd.pb(MX), r.lsm.pb(r.sum);
llt vl = 0;
int num = 0;
for (int i = 1, j = 0, p1 = 0; i <= slr; i++)
{
num += l.rnb[i];
// db(i, l.rnb[i], "qsdihqiwd");
while (l.rsm[i] >= r.lnd[j])
vl = r.lsm[++j];
if (vl < l.rnd[i])
{
if (j == srl)
{
if (i == slr)
p.ans += num;
else
{
while (p.rsm[p1] < l.rsm[i] + r.sum)
p1++;
p.rnb[p1] += num;
}
}
else if (i == slr)
p.lnb[lower_bound(iter(p.lsm), r.lsm[j]) - p.lsm.begin()] += num;
num = 0;
}
}
vl = num = 0;
for (int i = 1, j = 0, p2 = 0; i <= srl; i++)
{
num += r.lnb[i];
while (r.lsm[i] >= l.rnd[j])
vl = l.rsm[++j];
if (vl < r.lnd[i])
{
if (j == slr)
{
if (i == srl)
p.ans += num;
else
{
while (p.lsm[p2] < r.lsm[i] + l.sum)
p2++;
p.lnb[p2] += num;
}
}
else if (i == srl)
p.rnb[lower_bound(iter(p.rsm), l.rsm[j]) - p.rsm.begin()] += num;
num = 0;
}
}
l.rnb.pop_back(), l.rnd.pop_back(), l.rsm.pop_back();
r.lnb.pop_back(), r.lnd.pop_back(), r.lsm.pop_back();
return p;
}
signed main()
{
int n, q, x, a, b;
rd(n);
auto pul = [&](int i) -> void
{
tr[i] = tr[ls(i)] + tr[rs(i)];
};
auto cg = [&](int p, int v) -> void
{
p += n - 1, tr[p].ini(v);
for (p >>= 1; p; p >>= 1)
pul(p);
};
auto qy = [&](int l, int r) -> int
{
l += n - 1, r += n - 1;
if (l == r)
return tr[l].ans;
P p1 = tr[l++], p2 = tr[r--];
int md = (l + r) >> 1;
for (; l <= md; l++)
p1 = p1 + tr[l];
for (; r > md; r--)
p2 = tr[md] + p2;
return (p1 + p2).ans;
// P p1 = tr[l++], p2 = tr[r--];
// for (; l <= r; l >>= 1, r >>= 1)
// {
// if (l & 1)
// p1 = p1 + tr[l++];
// if (~r & 1)
// p2 = tr[r--] + p2;
// }
// return (p1 + p2).ans;
};
// for (int i = 1; i < n; i++)
// {
// tr[i] = tr[i - 1] + tr[i], db(tr[i].ans, tr[i].sum);
// for (int p : tr[i].rnb)
// cerr << p << ' ';
// cerr << '\n';
// for (int p : tr[i].rsm)
// cerr << p << ' ';
// cerr << '\n';
// }
for (int i = 0; i < n; i++)
rd(x), tr[i + n].ini(x);
for (int i = n - 1; i > 0; i--)
pul(i);
rd(q);
while (q--)
{
rd(x, a, b);
if (x == 1)
cg(a, b), db("-------");
else
prt(qy(a, b)), putchar('\n');
}
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
7 ms |
31580 KB |
Output is correct |
2 |
Incorrect |
7 ms |
31580 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
7 ms |
31580 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
7 ms |
31580 KB |
Output is correct |
2 |
Incorrect |
7 ms |
31580 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
7 ms |
31580 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
7 ms |
31580 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
7 ms |
31580 KB |
Output is correct |
2 |
Incorrect |
7 ms |
31580 KB |
Output isn't correct |
3 |
Halted |
0 ms |
0 KB |
- |