Submission #956783

# Submission time Handle Problem Language Result Execution time Memory
956783 2024-04-02T13:03:39 Z GrindMachine Bowling (BOI15_bow) C++17
100 / 100
259 ms 1776 KB
#pragma GCC optimize("O3,unroll-loops")

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

void solve(int test_case)
{
    ll n; cin >> n;
    string s; cin >> s;
    s = "$" + s;
    vector<ll> a(n+5);
    rep1(i,n) cin >> a[i];

    ll m = 30*n+5;
    ll dp1[m+5][15][15], dp2[m+5][15][15];
    memset(dp1,0,sizeof dp1);
    memset(dp2,0,sizeof dp2);
    if(a[n] != -1){
        dp1[a[n]][0][0] = 1;
    }
    else{
        rep(j,m+1){
            dp1[j][0][0] = 1;
        }
    }

    ll ptr = 2*n+1;

    auto ok = [&](string put, string pat){
        assert(sz(put) == sz(pat));
        rep(i,sz(put)){
            if(pat[i] == '?') conts;
            if(put[i] != pat[i]) return false; 
        }

        return true;
    };

    // final stage
    {
        string pat = "";
        rep(iter,3){
            pat.pb(s[ptr--]);
        }

        reverse(all(pat));
        vector<array<ll,3>> possible;

        // xxx
        if(ok("xxx",pat)){
            ll score = 30;
            possible.pb({score,10,10});
        }

        // xxA
        rep(A,10){
            string curr = "xx"+to_string(A);
            if(ok(curr,pat)){
                ll score = 20+A;
                possible.pb({score,10,10});
            }
        }

        // xA/
        rep(A,10){
            string curr = "x"+to_string(A)+"/";
            if(ok(curr,pat)){
                ll score = 20;
                possible.pb({score,10,A});
            }
        }

        // xAB
        rep(A,10){
            rep(B,10){
                if(A+B >= 10) break;
                string curr = "x"+to_string(A)+to_string(B);
                if(ok(curr,pat)){
                    ll score = 10+A+B;
                    possible.pb({score,10,A});
                }
            }
        }

        // A/x
        rep(A,10){
            string curr = to_string(A)+"/x";
            if(ok(curr,pat)){
                ll score = 20;
                possible.pb({score,A,10-A});
            }
        }

        // A/B
        rep(A,10){
            rep(B,10){
                string curr = to_string(A)+"/"+to_string(B);
                if(ok(curr,pat)){
                    ll score = 10+B;
                    possible.pb({score,A,10-A});
                }
            }
        }

        // AB-
        rep(A,10){
            rep(B,10){
                if(A+B >= 10) break;
                string curr = to_string(A)+to_string(B)+"-";
                if(ok(curr,pat)){
                    ll score = A+B;
                    possible.pb({score,A,B});
                }
            }
        }

        rep(j,m+1){
            if(!dp1[j][0][0]) conts;
            for(auto [score,x,y] : possible){
                if(j >= score){
                    dp2[j-score][x][y] += dp1[j][0][0];
                }
            }
        }
    }

    rev(i,n-1,1){
        string pat = "";
        rep(iter,2){
            pat.pb(s[ptr--]);
        }

        reverse(all(pat));

        rep(j,m+1){
            rep(x,11){
                rep(y,11){
                    if(a[i] != -1 and a[i] != j){
                        dp1[j][x][y] = 0;
                    }
                    else{
                        dp1[j][x][y] = dp2[j][x][y];
                    }

                    dp2[j][x][y] = 0;
                }
            }
        }

        rep(x,11){
            rep(y,11){
                vector<array<ll,3>> possible;

                // x-
                if(ok("x-",pat)){
                    ll score = 10+x+y;
                    possible.pb({score,10,x});
                }

                // A/
                rep(A,10){
                    string curr = to_string(A)+"/";
                    if(ok(curr,pat)){
                        ll score = 10+x;
                        possible.pb({score,A,10-A});
                    }
                }

                // AB
                rep(A,10){
                    rep(B,10){
                        if(A+B >= 10) conts;
                        string curr = to_string(A)+to_string(B);
                        if(ok(curr,pat)){
                            ll score = A+B;
                            possible.pb({score,A,B});
                        }
                    }
                }

                rep(j,m+1){
                    if(!dp1[j][x][y]) conts;
                    for(auto [score,x2,y2] : possible){
                        if(j >= score){
                            dp2[j-score][x2][y2] += dp1[j][x][y];
                        }
                    }
                }
            }
        }
    }

    ll ans = 0;
    rep(x,11){
        rep(y,11){
            ans += dp2[0][x][y];
        }
    }

    cout << ans << endl;
}

int main()
{
    fastio;

    int t = 1;
    cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 23 ms 1372 KB Output is correct
2 Correct 30 ms 1368 KB Output is correct
3 Correct 33 ms 1372 KB Output is correct
4 Correct 35 ms 1372 KB Output is correct
5 Correct 36 ms 1372 KB Output is correct
6 Correct 41 ms 1372 KB Output is correct
7 Correct 49 ms 1368 KB Output is correct
8 Correct 43 ms 1372 KB Output is correct
9 Correct 36 ms 1372 KB Output is correct
10 Correct 42 ms 1368 KB Output is correct
11 Correct 68 ms 1368 KB Output is correct
12 Correct 10 ms 600 KB Output is correct
13 Correct 2 ms 600 KB Output is correct
14 Correct 10 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 34 ms 1372 KB Output is correct
2 Correct 45 ms 1424 KB Output is correct
3 Correct 45 ms 1368 KB Output is correct
4 Correct 44 ms 1368 KB Output is correct
5 Correct 52 ms 1368 KB Output is correct
6 Correct 70 ms 1372 KB Output is correct
7 Correct 78 ms 1372 KB Output is correct
8 Correct 74 ms 1368 KB Output is correct
9 Correct 71 ms 1372 KB Output is correct
10 Correct 94 ms 1368 KB Output is correct
11 Correct 98 ms 1372 KB Output is correct
12 Correct 108 ms 1372 KB Output is correct
13 Correct 104 ms 1372 KB Output is correct
14 Correct 93 ms 1620 KB Output is correct
15 Correct 92 ms 1372 KB Output is correct
16 Correct 88 ms 1368 KB Output is correct
17 Correct 91 ms 1372 KB Output is correct
18 Correct 115 ms 1372 KB Output is correct
19 Correct 112 ms 1372 KB Output is correct
20 Correct 118 ms 1532 KB Output is correct
21 Correct 123 ms 1536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 19 ms 1372 KB Output is correct
2 Correct 47 ms 1372 KB Output is correct
3 Correct 42 ms 1572 KB Output is correct
4 Correct 40 ms 1528 KB Output is correct
5 Correct 38 ms 1324 KB Output is correct
6 Correct 71 ms 1368 KB Output is correct
7 Correct 71 ms 1372 KB Output is correct
8 Correct 71 ms 1372 KB Output is correct
9 Correct 79 ms 1548 KB Output is correct
10 Correct 84 ms 1368 KB Output is correct
11 Correct 85 ms 1372 KB Output is correct
12 Correct 91 ms 1368 KB Output is correct
13 Correct 84 ms 1372 KB Output is correct
14 Correct 84 ms 1368 KB Output is correct
15 Correct 84 ms 1524 KB Output is correct
16 Correct 85 ms 1372 KB Output is correct
17 Correct 84 ms 1368 KB Output is correct
18 Correct 79 ms 1544 KB Output is correct
19 Correct 70 ms 1532 KB Output is correct
20 Correct 73 ms 1368 KB Output is correct
21 Correct 71 ms 1532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 81 ms 1528 KB Output is correct
2 Correct 55 ms 1372 KB Output is correct
3 Correct 77 ms 1524 KB Output is correct
4 Correct 53 ms 1360 KB Output is correct
5 Correct 51 ms 1384 KB Output is correct
6 Correct 52 ms 1444 KB Output is correct
7 Correct 54 ms 1372 KB Output is correct
8 Correct 49 ms 1776 KB Output is correct
9 Correct 58 ms 1372 KB Output is correct
10 Correct 164 ms 1520 KB Output is correct
11 Correct 142 ms 1524 KB Output is correct
12 Correct 138 ms 1372 KB Output is correct
13 Correct 130 ms 1520 KB Output is correct
14 Correct 90 ms 1524 KB Output is correct
15 Correct 82 ms 1372 KB Output is correct
16 Correct 89 ms 1368 KB Output is correct
17 Correct 87 ms 1524 KB Output is correct
18 Correct 67 ms 1368 KB Output is correct
19 Correct 69 ms 1372 KB Output is correct
20 Correct 75 ms 1524 KB Output is correct
21 Correct 66 ms 1528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 1372 KB Output is correct
2 Correct 30 ms 1368 KB Output is correct
3 Correct 33 ms 1372 KB Output is correct
4 Correct 35 ms 1372 KB Output is correct
5 Correct 36 ms 1372 KB Output is correct
6 Correct 41 ms 1372 KB Output is correct
7 Correct 49 ms 1368 KB Output is correct
8 Correct 43 ms 1372 KB Output is correct
9 Correct 36 ms 1372 KB Output is correct
10 Correct 42 ms 1368 KB Output is correct
11 Correct 68 ms 1368 KB Output is correct
12 Correct 10 ms 600 KB Output is correct
13 Correct 2 ms 600 KB Output is correct
14 Correct 10 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
16 Correct 34 ms 1372 KB Output is correct
17 Correct 45 ms 1424 KB Output is correct
18 Correct 45 ms 1368 KB Output is correct
19 Correct 44 ms 1368 KB Output is correct
20 Correct 52 ms 1368 KB Output is correct
21 Correct 70 ms 1372 KB Output is correct
22 Correct 78 ms 1372 KB Output is correct
23 Correct 74 ms 1368 KB Output is correct
24 Correct 71 ms 1372 KB Output is correct
25 Correct 94 ms 1368 KB Output is correct
26 Correct 98 ms 1372 KB Output is correct
27 Correct 108 ms 1372 KB Output is correct
28 Correct 104 ms 1372 KB Output is correct
29 Correct 93 ms 1620 KB Output is correct
30 Correct 92 ms 1372 KB Output is correct
31 Correct 88 ms 1368 KB Output is correct
32 Correct 91 ms 1372 KB Output is correct
33 Correct 115 ms 1372 KB Output is correct
34 Correct 112 ms 1372 KB Output is correct
35 Correct 118 ms 1532 KB Output is correct
36 Correct 123 ms 1536 KB Output is correct
37 Correct 19 ms 1372 KB Output is correct
38 Correct 47 ms 1372 KB Output is correct
39 Correct 42 ms 1572 KB Output is correct
40 Correct 40 ms 1528 KB Output is correct
41 Correct 38 ms 1324 KB Output is correct
42 Correct 71 ms 1368 KB Output is correct
43 Correct 71 ms 1372 KB Output is correct
44 Correct 71 ms 1372 KB Output is correct
45 Correct 79 ms 1548 KB Output is correct
46 Correct 84 ms 1368 KB Output is correct
47 Correct 85 ms 1372 KB Output is correct
48 Correct 91 ms 1368 KB Output is correct
49 Correct 84 ms 1372 KB Output is correct
50 Correct 84 ms 1368 KB Output is correct
51 Correct 84 ms 1524 KB Output is correct
52 Correct 85 ms 1372 KB Output is correct
53 Correct 84 ms 1368 KB Output is correct
54 Correct 79 ms 1544 KB Output is correct
55 Correct 70 ms 1532 KB Output is correct
56 Correct 73 ms 1368 KB Output is correct
57 Correct 71 ms 1532 KB Output is correct
58 Correct 81 ms 1528 KB Output is correct
59 Correct 55 ms 1372 KB Output is correct
60 Correct 77 ms 1524 KB Output is correct
61 Correct 53 ms 1360 KB Output is correct
62 Correct 51 ms 1384 KB Output is correct
63 Correct 52 ms 1444 KB Output is correct
64 Correct 54 ms 1372 KB Output is correct
65 Correct 49 ms 1776 KB Output is correct
66 Correct 58 ms 1372 KB Output is correct
67 Correct 164 ms 1520 KB Output is correct
68 Correct 142 ms 1524 KB Output is correct
69 Correct 138 ms 1372 KB Output is correct
70 Correct 130 ms 1520 KB Output is correct
71 Correct 90 ms 1524 KB Output is correct
72 Correct 82 ms 1372 KB Output is correct
73 Correct 89 ms 1368 KB Output is correct
74 Correct 87 ms 1524 KB Output is correct
75 Correct 67 ms 1368 KB Output is correct
76 Correct 69 ms 1372 KB Output is correct
77 Correct 75 ms 1524 KB Output is correct
78 Correct 66 ms 1528 KB Output is correct
79 Correct 78 ms 1528 KB Output is correct
80 Correct 56 ms 1372 KB Output is correct
81 Correct 49 ms 1372 KB Output is correct
82 Correct 54 ms 1620 KB Output is correct
83 Correct 44 ms 1532 KB Output is correct
84 Correct 78 ms 1536 KB Output is correct
85 Correct 79 ms 1368 KB Output is correct
86 Correct 76 ms 1372 KB Output is correct
87 Correct 78 ms 1628 KB Output is correct
88 Correct 85 ms 1532 KB Output is correct
89 Correct 101 ms 1372 KB Output is correct
90 Correct 96 ms 1372 KB Output is correct
91 Correct 105 ms 1372 KB Output is correct
92 Correct 67 ms 1524 KB Output is correct
93 Correct 91 ms 1524 KB Output is correct
94 Correct 116 ms 1536 KB Output is correct
95 Correct 151 ms 1528 KB Output is correct
96 Correct 174 ms 1532 KB Output is correct
97 Correct 245 ms 1372 KB Output is correct
98 Correct 259 ms 1532 KB Output is correct
99 Correct 244 ms 1368 KB Output is correct
100 Correct 244 ms 1372 KB Output is correct