#include <bits/stdc++.h>
using namespace std;
using ll = int;
ll Bx, By;
map<pair<int, int>, int> query_ans;
vector<vector<int>> upper_triangles;
struct Point {
ll x, y;
int idx;
inline Point operator-(const Point& p) const { return {x - p.x, y - p.y, idx}; }
inline Point operator+(const Point& p) const { return {x + p.x, y + p.y, idx}; }
inline long long cross(const Point& p) const {
return x * (long long)p.y - y * (long long)p.x;
}
inline bool operator<(const Point& p) const {
return to_upper().cross(p.to_upper()) > 0;
}
inline Point to_upper() const { return above() ? *this : negate(); }
inline bool above() const {
// TODO: Improve this
// const Point B{Bx, By, idx};
return Bx * (long long)y - By * (long long)x > 0;
// return B.cross(*this) > 0;
}
inline Point negate() const { return {-x, -y, idx}; }
};
short orientation(const Point& o, const Point& a, const Point& b) {
// assert((a - o).cross(b - o) != 0);
const long long x = (a - o).cross(b - o);
return (x > 0) - (x < 0);
}
short bit[30'001];
int bit_n = 30'001;
void clear(const int n) { memset(bit, 0, sizeof(short) * n); }
// TODO: Return should be int, not short.
int sum_single(int r) {
int ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
return ret;
}
int sum(int l, int r) { return sum_single(r) - sum_single(l - 1); }
void add(int idx, const short delta) {
for (; idx < bit_n; idx = idx | (idx + 1)) bit[idx] += delta;
}
vector<vector<Point>> order_by_b;
bool cmp_by_b(const Point& p, const Point& q) {
const bool a1 = p.above();
const bool a2 = q.above();
if (a1 != a2) return a1;
return p.cross(q) > 0;
}
int handle_query(const vector<Point>& points1, const vector<Point>& points2,
const vector<Point>& ord_b, const Point& B, const int attacked_idx) {
if (points1.empty() || points2.empty()) return 0;
// bit_n = (int)points2.size();
// clear(points2.size());
// const int n = points2.size();
// int points_above = 0;
// int points_below = 0;
// for (const auto& q : points2) {
// if (!q.above()) {
// add(q.idx, 1);
// points_below++;
// } else {
// points_above++;
// }
// }
const auto mid = lower_bound(ord_b.begin(), ord_b.end(), (Point{0, 0} - B), cmp_by_b);
int total = 0;
// query_ans[{1, 1}] = 1;
// auto& ref = query_ans.at({1, 1});
int points_activated_above = 0;
int points_deactivated_below = 0;
int j = 0;
for (const Point& p : points1) {
while (j < (int)points2.size()) {
const Point& q = points2[j];
if (!(q < p)) break;
add(q.idx, q.above() ? 1 : -1);
if (q.above()) points_activated_above++;
if (!q.above()) points_deactivated_below++;
j++;
}
Point from_point = p;
Point to_point = B;
to_point.x += B.x - p.x;
to_point.y += B.y - p.y;
if (p.above()) {
const auto it2 = lower_bound(mid, ord_b.end(), to_point - B, cmp_by_b);
const int below_to_angle = it2 - mid;
const int activated_below = below_to_angle - points_deactivated_below;
total += activated_below;
// TODO: Improve range of loop (make it smaller)
for (const auto& q : points2) {
if (q.above()) {
total += q.cross(p) > 0 && orientation(B, p, q) > 0;
}
}
} else {
swap(from_point, to_point);
const auto it2 = lower_bound(ord_b.begin(), mid, B - p, cmp_by_b);
const int above_to_angle = it2 - ord_b.begin();
const int activated_above = points_activated_above - above_to_angle;
total += activated_above;
for (const auto& q : points2) {
if (!q.above()) {
total += p.cross(q) > 0 && orientation(B, p, q) < 0;
}
}
}
}
return total;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int N, M, Q;
int t = 0;
while (cin >> N >> M) {
vector<vector<Point>> tribe_points(M + 1);
order_by_b = vector<vector<Point>>(M + 1);
for (int i = 0; i < N; i++) {
Point p;
int tribe;
cin >> p.x >> p.y >> tribe;
tribe_points[tribe].push_back(p);
}
Point A;
cin >> A.x >> A.y;
cin >> Bx >> By;
cin >> Q;
Bx -= A.x;
By -= A.y;
for (auto& points : tribe_points) {
for (auto& p : points) p = p - A;
}
const Point B{Bx, By, -1};
for (int m = 0; m <= M; m++) {
auto& points = tribe_points[m];
for (auto& p : tribe_points.at(m)) p = p - B;
sort(points.begin(), points.end(), cmp_by_b);
for (int i = 0; i < (int)points.size(); i++) {
points[i].idx = i;
}
order_by_b[m] = tribe_points.at(m);
for (auto& p : tribe_points.at(m)) p = p + B;
}
for (auto& points : tribe_points) {
sort(points.begin(), points.end());
}
const Point origin{0, 0, -1};
// upper_triangles.assign(M + 1, vector<int>());
// for (int m = 0; m <= M; m++) {
// clear(30'000);
// const auto& ord_b = order_by_b[m];
// for (const auto& p : tribe_points[m]) {
// if (!p.above()) {
// upper_triangles[m].emplace_back(0);
// continue;
// }
// add(p.idx, 1);
// upper_triangles[m].emplace_back(sum(p.idx, 30'000));
// }
// assert(ord_b.size() == upper_triangles[m].size());
// }
// TODO: Are the fenwick queries actually faster???? DO some experiments
// TODO: Set this value more properly, and explain that this doesn't really help
// but it's something. (assuming fenwick is ACTUALLY faster)
// TODO: Comment that this solution is probably not the intended one. The example
// solution is much faster (under a second).
// TODO: The thing is, I don't want to leave this code without the radial sweep, I
// want to add it for the lulz.
const int big_query = N / 2;
while (Q--) {
int i, j;
cin >> i >> j;
// cerr << tribe_points[i].size() * tribe_points[j].size() << endl;
// const long long size = tribe_points[i].size() * tribe_points[j].size();
if (true) {
const int ans =
handle_query(tribe_points.at(i), tribe_points.at(j), order_by_b.at(j), B, j);
cout << ans << '\n';
} else {
int total = 0;
for (const Point& p : tribe_points[i]) {
for (const Point& q : tribe_points[j]) {
if (orientation(origin, B, p) == 1) {
if (orientation(B, p, q) == 1 && orientation(p, origin, q) == 1) total++;
} else {
if (orientation(origin, p, q) == 1 && orientation(p, B, q) == 1) total++;
}
}
}
cout << total << '\n';
}
}
}
}
Compilation message
dragon2.cpp: In function 'int main()':
dragon2.cpp:221:15: warning: unused variable 'big_query' [-Wunused-variable]
221 | const int big_query = N / 2;
| ^~~~~~~~~
dragon2.cpp:151:7: warning: unused variable 't' [-Wunused-variable]
151 | int t = 0;
| ^
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
6 ms |
600 KB |
Output is correct |
2 |
Correct |
13 ms |
604 KB |
Output is correct |
3 |
Correct |
25 ms |
688 KB |
Output is correct |
4 |
Correct |
33 ms |
1640 KB |
Output is correct |
5 |
Correct |
22 ms |
1896 KB |
Output is correct |
6 |
Correct |
2 ms |
860 KB |
Output is correct |
7 |
Correct |
2 ms |
732 KB |
Output is correct |
8 |
Correct |
4 ms |
604 KB |
Output is correct |
9 |
Correct |
6 ms |
604 KB |
Output is correct |
10 |
Correct |
3 ms |
348 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
430 ms |
1984 KB |
Output is correct |
2 |
Correct |
839 ms |
1968 KB |
Output is correct |
3 |
Correct |
33 ms |
2140 KB |
Output is correct |
4 |
Correct |
11 ms |
2136 KB |
Output is correct |
5 |
Correct |
15 ms |
3928 KB |
Output is correct |
6 |
Correct |
513 ms |
1996 KB |
Output is correct |
7 |
Correct |
550 ms |
2004 KB |
Output is correct |
8 |
Correct |
230 ms |
1756 KB |
Output is correct |
9 |
Correct |
532 ms |
1796 KB |
Output is correct |
10 |
Correct |
231 ms |
1724 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
6 ms |
600 KB |
Output is correct |
2 |
Correct |
13 ms |
604 KB |
Output is correct |
3 |
Correct |
25 ms |
688 KB |
Output is correct |
4 |
Correct |
33 ms |
1640 KB |
Output is correct |
5 |
Correct |
22 ms |
1896 KB |
Output is correct |
6 |
Correct |
2 ms |
860 KB |
Output is correct |
7 |
Correct |
2 ms |
732 KB |
Output is correct |
8 |
Correct |
4 ms |
604 KB |
Output is correct |
9 |
Correct |
6 ms |
604 KB |
Output is correct |
10 |
Correct |
3 ms |
348 KB |
Output is correct |
11 |
Correct |
430 ms |
1984 KB |
Output is correct |
12 |
Correct |
839 ms |
1968 KB |
Output is correct |
13 |
Correct |
33 ms |
2140 KB |
Output is correct |
14 |
Correct |
11 ms |
2136 KB |
Output is correct |
15 |
Correct |
15 ms |
3928 KB |
Output is correct |
16 |
Correct |
513 ms |
1996 KB |
Output is correct |
17 |
Correct |
550 ms |
2004 KB |
Output is correct |
18 |
Correct |
230 ms |
1756 KB |
Output is correct |
19 |
Correct |
532 ms |
1796 KB |
Output is correct |
20 |
Correct |
231 ms |
1724 KB |
Output is correct |
21 |
Correct |
427 ms |
1988 KB |
Output is correct |
22 |
Correct |
875 ms |
2132 KB |
Output is correct |
23 |
Correct |
1064 ms |
2384 KB |
Output is correct |
24 |
Correct |
585 ms |
3176 KB |
Output is correct |
25 |
Correct |
46 ms |
3664 KB |
Output is correct |
26 |
Correct |
35 ms |
5204 KB |
Output is correct |
27 |
Correct |
14 ms |
4700 KB |
Output is correct |
28 |
Correct |
14 ms |
4592 KB |
Output is correct |
29 |
Correct |
3371 ms |
4808 KB |
Output is correct |
30 |
Correct |
67 ms |
5020 KB |
Output is correct |
31 |
Correct |
34 ms |
4944 KB |
Output is correct |
32 |
Correct |
54 ms |
4944 KB |
Output is correct |
33 |
Correct |
414 ms |
5008 KB |
Output is correct |
34 |
Correct |
33 ms |
4948 KB |
Output is correct |
35 |
Correct |
36 ms |
5216 KB |
Output is correct |
36 |
Correct |
34 ms |
4956 KB |
Output is correct |
37 |
Correct |
35 ms |
5200 KB |
Output is correct |
38 |
Correct |
646 ms |
4944 KB |
Output is correct |
39 |
Correct |
508 ms |
4856 KB |
Output is correct |
40 |
Correct |
432 ms |
4920 KB |
Output is correct |
41 |
Correct |
2875 ms |
4840 KB |
Output is correct |
42 |
Correct |
1402 ms |
5092 KB |
Output is correct |
43 |
Correct |
869 ms |
4976 KB |
Output is correct |
44 |
Correct |
2016 ms |
3568 KB |
Output is correct |
45 |
Correct |
1044 ms |
3180 KB |
Output is correct |
46 |
Correct |
655 ms |
3276 KB |
Output is correct |
47 |
Correct |
1882 ms |
3296 KB |
Output is correct |
48 |
Correct |
1260 ms |
3180 KB |
Output is correct |
49 |
Correct |
711 ms |
3156 KB |
Output is correct |