답안 #955492

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
955492 2024-03-30T15:07:23 Z yoav_s Newspapers (CEOI21_newspapers) C++17
17 / 100
1000 ms 660 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef vector<ll> v;
typedef vector<v> vv;
typedef vector<vv> vvv;
typedef pair<ll,ll> p;
typedef vector<p> vp;
typedef vector<vp> vvp;
typedef vector<vvp> vvvp;
typedef pair<ll, p> tri;
typedef vector<tri> vtri;
typedef vector<vtri> vvtri;
typedef vector<vvtri> vvvtri;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<vvb> vvvb;

#define f first
#define s second
#define pb push_back
#define eb emplace_back
#define all(v) (v).begin(),(v).end()

const ll INF = 1e18;
const ll mod = 1e9 + 7;

void eulerTour(ll i, v &visited, vv &graph, v &res, ll &uniqCount, ll nonLeafCount)
{
    res.pb(i);
    visited[i]++;
    uniqCount++;

    for (ll x : graph[i])
    {
        if (visited[x] == 0 && graph[x].size() > 1)
        {
            eulerTour(x,visited,graph,res,uniqCount, nonLeafCount);
            if (uniqCount < nonLeafCount)
            {
                res.pb(i);
                visited[i]++;
            }
        }
    }
}

ll nonLeafSubtreeCount(ll i, v &res, vv &graph)
{
    if (res[i] != -1 || graph[i].size() == 1) return 0;
    res[i] = 1;
    for (ll x : graph[i]) res[i] += nonLeafSubtreeCount(x, res, graph);
    return res[i];
}

int main()
{
    ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
    ll N, M;
    cin >> N >> M;
    vv graph(N);
    for (ll i=  0; i < M; i++)
    {
        ll a, b;
        cin >> a >> b;
        graph[a-1].pb(b-1);
        graph[b-1].pb(a-1);
    }
    if (M != N - 1)
    {
        cout << "NO\n";
        return 0;
    }
    //theory - find euler tour, check if visiting a vertex thrice (at least). if yes, then NO. otherwise check if works. if not, repeat twice
    if (N == 1)
    {
        cout << "YES\n1\n1\n";
        return 0;
    }
    if (N == 2)
    {
        cout << "YES\n2\n1 1\n";
        return 0;
    }
    ll mini = INF;
    v minTour;
    for (ll i=  0; i < N; i++)
    {
        if (graph[i].size() == 1) continue;
        v nonLeafSubtreeCounts(N, -1); nonLeafSubtreeCount(i, nonLeafSubtreeCounts, graph);
        for (ll i = 0; i < N; i++) sort(all(graph[i]),[&nonLeafSubtreeCounts](ll i, ll j){return nonLeafSubtreeCounts[i] < nonLeafSubtreeCounts[j];});
        ll cnt = 0;
        v visited(N, 0);
        v tour;
        ll nonLeafCount = 0;
        for (auto x : graph) if (x.size() != 1) nonLeafCount++;
        eulerTour(i, visited, graph, tour, cnt, nonLeafCount);
        vb available(N, true);
        bool poss = true;
        for (ll x : tour)
        {
            available[x] = false;
            vb newGeneration(N, false);
            for (ll i = 0 ;i < N; i++) if (available[i]) for (ll x : graph[i]) newGeneration[x] = true;
            available = newGeneration;
        }
        for (ll i = 0; i < N; i++) if (available[i]) poss = false;
        
        if (!poss)
        {
            v newTour1;
            for (ll x : tour) newTour1.pb(x);
            for (ll x : tour) newTour1.pb(x);
            
            poss = true;
            available = vb(N, true);
            for (ll x : newTour1)
            {
                available[x] = false;
                vb newGeneration(N, false);
                for (ll i = 0 ;i < N; i++) if (available[i]) for (ll x : graph[i]) newGeneration[x] = true;
                available = newGeneration;
            }
            for (ll i = 0; i < N; i++) if (available[i]) poss = false;
            if (poss) tour = newTour1;
            else
            {
                v newTour2;
                for (ll x : tour) newTour2.pb(x);
                for (ll i = tour.size() - 1; i >= 0; i--) newTour2.pb(tour[i]);
                poss = true;
                available = vb(N, true);
                for (ll x : newTour2)
                {
                    available[x] = false;
                    vb newGeneration(N, false);
                    for (ll i = 0 ;i < N; i++) if (available[i]) for (ll x : graph[i]) newGeneration[x] = true;
                    available = newGeneration;
                }
                for (ll i = 0; i < N; i++) if (available[i]) poss = false;
                if (poss) tour = newTour2;
            }
        }
        if (poss)
        {
            mini = tour.size();
            minTour = tour;
            break;
        }
    }
    if (mini == INF)
    {
        cout << "NO\n"; return 0;
    }
    cout << "YES\n";
    cout << mini << "\n";
    for (ll x : minTour) cout << x + 1 << " ";
    cout << "\n";
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Partially correct 0 ms 344 KB Provide a successful but not optimal strategy.
9 Correct 0 ms 348 KB Output is correct
10 Partially correct 1 ms 344 KB Provide a successful but not optimal strategy.
11 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
12 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
13 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
14 Correct 0 ms 348 KB Output is correct
15 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
16 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
17 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
18 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
19 Correct 1 ms 348 KB Output is correct
20 Partially correct 0 ms 344 KB Provide a successful but not optimal strategy.
21 Correct 0 ms 348 KB Output is correct
22 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
23 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
24 Correct 0 ms 348 KB Output is correct
25 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
26 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
27 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
28 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
29 Correct 0 ms 348 KB Output is correct
30 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
31 Correct 0 ms 348 KB Output is correct
32 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
33 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
37 Partially correct 1 ms 388 KB Provide a successful but not optimal strategy.
38 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
39 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
40 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
41 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
42 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
43 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
44 Partially correct 0 ms 344 KB Provide a successful but not optimal strategy.
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
49 Correct 1 ms 348 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
51 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
52 Correct 1 ms 348 KB Output is correct
53 Correct 0 ms 344 KB Output is correct
54 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
55 Correct 1 ms 348 KB Output is correct
56 Correct 0 ms 348 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Correct 0 ms 348 KB Output is correct
59 Correct 0 ms 348 KB Output is correct
60 Correct 0 ms 348 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 0 ms 348 KB Output is correct
63 Correct 0 ms 348 KB Output is correct
64 Correct 0 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 12 ms 604 KB Output is correct
12 Correct 3 ms 344 KB Output is correct
13 Correct 6 ms 604 KB Output is correct
14 Correct 6 ms 604 KB Output is correct
15 Correct 4 ms 604 KB Output is correct
16 Correct 13 ms 600 KB Output is correct
17 Correct 8 ms 600 KB Output is correct
18 Correct 14 ms 656 KB Output is correct
19 Correct 8 ms 604 KB Output is correct
20 Correct 14 ms 660 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Partially correct 0 ms 344 KB Provide a successful but not optimal strategy.
9 Correct 0 ms 348 KB Output is correct
10 Partially correct 1 ms 344 KB Provide a successful but not optimal strategy.
11 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
12 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
13 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
14 Correct 0 ms 348 KB Output is correct
15 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
16 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
17 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
18 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
19 Correct 1 ms 348 KB Output is correct
20 Partially correct 0 ms 344 KB Provide a successful but not optimal strategy.
21 Correct 0 ms 348 KB Output is correct
22 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
23 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
24 Correct 0 ms 348 KB Output is correct
25 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
26 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
27 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
28 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
29 Correct 0 ms 348 KB Output is correct
30 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
31 Correct 0 ms 348 KB Output is correct
32 Partially correct 1 ms 348 KB Provide a successful but not optimal strategy.
33 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
37 Partially correct 1 ms 388 KB Provide a successful but not optimal strategy.
38 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
39 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
40 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
41 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
42 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
43 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
44 Partially correct 0 ms 344 KB Provide a successful but not optimal strategy.
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
49 Correct 1 ms 348 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
51 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
52 Correct 1 ms 348 KB Output is correct
53 Correct 0 ms 344 KB Output is correct
54 Partially correct 0 ms 348 KB Provide a successful but not optimal strategy.
55 Correct 1 ms 348 KB Output is correct
56 Correct 0 ms 348 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Correct 0 ms 348 KB Output is correct
59 Correct 0 ms 348 KB Output is correct
60 Correct 0 ms 348 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 0 ms 348 KB Output is correct
63 Correct 0 ms 348 KB Output is correct
64 Correct 0 ms 348 KB Output is correct
65 Correct 1 ms 352 KB Output is correct
66 Correct 0 ms 352 KB Output is correct
67 Correct 0 ms 352 KB Output is correct
68 Correct 0 ms 352 KB Output is correct
69 Correct 0 ms 352 KB Output is correct
70 Correct 0 ms 352 KB Output is correct
71 Correct 1 ms 352 KB Output is correct
72 Partially correct 0 ms 352 KB Provide a successful but not optimal strategy.
73 Correct 0 ms 360 KB Output is correct
74 Partially correct 0 ms 360 KB Provide a successful but not optimal strategy.
75 Partially correct 0 ms 360 KB Provide a successful but not optimal strategy.
76 Partially correct 0 ms 360 KB Provide a successful but not optimal strategy.
77 Partially correct 0 ms 360 KB Provide a successful but not optimal strategy.
78 Correct 1 ms 360 KB Output is correct
79 Execution timed out 1038 ms 360 KB Time limit exceeded
80 Halted 0 ms 0 KB -