Submission #955151

# Submission time Handle Problem Language Result Execution time Memory
955151 2024-03-29T13:30:20 Z cristi_tanase Cats or Dogs (JOI18_catdog) C++17
100 / 100
451 ms 29904 KB
#include "catdog.h"
#include <bits/stdc++.h>

using namespace std;

const int nmax = 1e5 + 5, mod = 1e9 + 7, inf = 2e5;
int n, m;
vector<int> g[nmax], path[nmax];
int sz[nmax], heavy[nmax], depth[nmax], top[nmax], parent[nmax], pos[nmax], crtpos, bottom[nmax];

struct T {
    int cc, cd, dc, dd;
};

T aint[nmax * 4];

T combine(T x, T y) {
    T ans = {inf, inf, inf, inf};
    ans.cc = min({x.cc + y.cc, x.cc + y.dc + 1, x.cd + y.dc, x.cd + y.cc + 1});
    ans.cd = min({x.cc + y.cd, x.cc + y.dd + 1, x.cd + y.dd, x.cd + y.cd + 1});
    ans.dd = min({x.dd + y.dd, x.dd + y.cd + 1, x.dc + y.cd, x.dc + y.dd + 1});
    ans.dc = min({x.dd + y.dc, x.dd + y.cc + 1, x.dc + y.cc, x.dc + y.dc + 1});
    return ans;
}


void build(int node, int left, int right) {
    if (left == right) {
        aint[node].cc = aint[node].dd = 0;
        aint[node].cd = aint[node].dc = inf;
        return;
    }
    int mid = (left + right) / 2;
    build(node * 2, left, mid);
    build(node * 2 + 1, mid + 1, right);
//    aint[node] = combine(aint[node * 2], aint[node * 2 + 1]);
    aint[node].cc = aint[node].dd = 0;
    aint[node].cd = aint[node].dc = 0;
}

void update(int node, int left, int right, int x, pair<int, int> y) {
    if (left == right) {
        aint[node].cc += y.first;
        aint[node].dd += y.second;
        return;
    }
    int mid = (left + right) / 2;
    if (x <= mid) update(node * 2, left, mid, x, y);
    else update(node * 2 + 1, mid + 1, right, x, y);
    aint[node] = combine(aint[node * 2], aint[node * 2 + 1]);
}

void update(int x, pair<int, int> y) {
    update(1, 1, n, x, y);
}

T query(int node, int left, int right, int x, int y) {
    if (x <= left && right <= y) {
        return aint[node];
    }
    int mid = (left + right) / 2;
    if (x <= mid && y > mid) {
        return combine(query(node * 2, left, mid, x, y), query(node * 2 + 1, mid + 1, right, x, y));
    }
    if (x <= mid) {
        return query(node * 2, left, mid, x, y);
    }
    if (y > mid) {
        return query(node * 2 + 1, mid + 1, right, x, y);
    }
}

T query(int x, int y) {
    return query(1, 1, n, x, y);
}

void dfs1(int x, int par = 0) {
    sz[x] = 1;
    parent[x] = par;
    depth[x] = depth[par] + 1;
    int mx = 0;
    for (auto y: g[x]) {
        if (y == par) continue;
        dfs1(y, x);
        sz[x] += sz[y];
        if (sz[y] > mx) {
            heavy[x] = y;
            mx = sz[y];
        }
    }
}

void decompose(int x, int crttop) {
    path[crttop].push_back(x);
    top[x] = crttop;
    pos[x] = ++crtpos;
    if (heavy[x]) {
        decompose(heavy[x], crttop);
    }
    for (auto y: g[x]) {
        if (y == parent[x]) continue;
        if (heavy[x] != y) {
            decompose(y, y);
        }
    }
}

pair<int, int> getval(int x) {
    pair<int, int> ans; // first - cc ; second - dd
    for (auto y: g[x]) {
        if (y == parent[x] || y == heavy[x]) continue;
        T crt = query(pos[top[y]], pos[bottom[y]]);
        ans.first += min({crt.cc, crt.cd, crt.dc + 1, crt.dd + 1});
        ans.second += min({crt.cc + 1, crt.cd + 1, crt.dc, crt.dd});
    }
    T tmp = query(pos[x], pos[x]);
    if (tmp.cc == inf) ans.first = inf;
    if (tmp.dd == inf) ans.second = inf;
    return ans;
}

void dfs(int x) {
    for (auto y: g[x]) {
        if (y == parent[x]) continue;
        dfs(y);
        pair<int, int> ans;
        T crt = query(pos[top[y]], pos[bottom[y]]);
        ans.first += min({crt.cc, crt.cd, crt.dc + 1, crt.dd + 1});
        ans.second += min({crt.cc + 1, crt.cd + 1, crt.dc, crt.dd});
        update(pos[x], ans);
    }
}

void initialize(int N, std::vector<int> A, std::vector<int> B) {
    n = N; m = A.size();
    for (int i = 0; i < m; i++) {
        g[A[i]].push_back(B[i]);
        g[B[i]].push_back(A[i]);
    }
    dfs1(1);
    decompose(1, 1);
    build(1, 1, n);

    for (int i = 1; i <= n; i++) {
        for (auto x: path[i]) {
            bottom[x] = path[i].back();
        }
    }
    dfs(1);
}

int animal[nmax];

int cat(int x) {
    animal[x] = 1;

    vector<int> v;
    int cx = x;
    while (x) {
        v.push_back(x);
        x = parent[top[x]];
    }
    for (int i = (int)v.size() - 2; i >= 0; i--) {
        x = v[i];
        T crtpos = query(pos[top[x]], pos[bottom[x]]);
        pair<int, int> tmp;
        tmp.first = -min({crtpos.cc, crtpos.cd, crtpos.dc + 1, crtpos.dd + 1});
        tmp.second = -min({crtpos.cc + 1, crtpos.cd + 1, crtpos.dc, crtpos.dd});
        update(pos[v[i + 1]], tmp);
    }
    x = cx;
    update(pos[x], {0, inf});
    for (int i = 0; i + 1 < v.size(); i++) {
        x = v[i];
        T crtpos = query(pos[top[x]], pos[bottom[x]]);
        pair<int, int> tmp;
        tmp.first = min({crtpos.cc, crtpos.cd, crtpos.dc + 1, crtpos.dd + 1});
        tmp.second = min({crtpos.cc + 1, crtpos.cd + 1, crtpos.dc, crtpos.dd});
        update(pos[v[i + 1]], tmp);
    }
    T ans = query(pos[top[1]], pos[bottom[1]]);
    return min({ans.cc, ans.cd, ans.dc, ans.dd});

}

int dog(int x) {
//    if (x == 9) {
//        int node = 14;
//        while (node != 0) {
//            T tmp = query(pos[node], pos[node]);
//            cout << node << ": " << tmp.cc << ' ' << tmp.dd << '\n';
//            node = parent[node];
//        }
//        cout << '\n';
//    }
    animal[x] = 2;
    vector<int> v;
    int cx = x;
    while (x) {
        v.push_back(x);
        x = parent[top[x]];
    }
    for (int i = (int)v.size() - 2; i >= 0; i--) {
        x = v[i];
        T crtpos = query(pos[top[x]], pos[bottom[x]]);
        pair<int, int> tmp;
        tmp.first = -min({crtpos.cc, crtpos.cd, crtpos.dc + 1, crtpos.dd + 1});
        tmp.second = -min({crtpos.cc + 1, crtpos.cd + 1, crtpos.dc, crtpos.dd});
        update(pos[v[i + 1]], tmp);
    }
    x = cx;
    T aux = query(pos[x], pos[x]);
    update(pos[x], {inf, 0});
    aux = query(pos[x], pos[x]);
//    x = parent[top[x]];
    for (int i = 0; i + 1 < v.size(); i++) {
        x = v[i];
        T crtpos = query(pos[top[x]], pos[bottom[x]]);
        pair<int, int> tmp;
        tmp.first = min({crtpos.cc, crtpos.cd, crtpos.dc + 1, crtpos.dd + 1});
        tmp.second = min({crtpos.cc + 1, crtpos.cd + 1, crtpos.dc, crtpos.dd});
        update(pos[v[i + 1]], tmp);
    }
    T ans = query(pos[top[1]], pos[bottom[1]]);

//    int node = 8;
//    while (node != 0) {
//        aux = query(pos[node], pos[node]);
//        cout << node << ": " << aux.cc << ' ' << aux.dd << '\n';
//        node = parent[node];
//    }

    return min({ans.cc, ans.cd, ans.dc, ans.dd});
}

int neighbor(int x) {
//    if (x == 6 || x == 14) {
//        int node = 14;
//        while (node != 0) {
//            T tmp = query(pos[node], pos[node]);
//            cout << node << ": " << tmp.cc << ' ' << tmp.dd << '\n';
//            node = parent[node];
//        }
//        cout << '\n';
//    }

    if (x == 6) {
        int auix = 0;
    }

    vector<int> v;
    int cx = x;
    while (x) {
        v.push_back(x);
        x = parent[top[x]];
    }
    for (int i = (int)v.size() - 2; i >= 0; i--) {
        x = v[i];
        T crtpos = query(pos[top[x]], pos[bottom[x]]);
        pair<int, int> tmp;
        tmp.first = -min({crtpos.cc, crtpos.cd, crtpos.dc + 1, crtpos.dd + 1});
        tmp.second = -min({crtpos.cc + 1, crtpos.cd + 1, crtpos.dc, crtpos.dd});
        update(pos[v[i + 1]], tmp);
    }
    x = cx;
    if (animal[x] == 1) {
        update(pos[x], {0, -inf});
    } else if (animal[x] == 2) {
        update(pos[x], {-inf, 0});
    }
//    x = parent[top[x]];
    for (int i = 0; i + 1 < v.size(); i++) {
        x = v[i];
        T crtpos = query(pos[top[x]], pos[bottom[x]]);
        pair<int, int> tmp;
        tmp.first = min({crtpos.cc, crtpos.cd, crtpos.dc + 1, crtpos.dd + 1});
        tmp.second = min({crtpos.cc + 1, crtpos.cd + 1, crtpos.dc, crtpos.dd});
        update(pos[v[i + 1]], tmp);
    }
    T ans = query(pos[top[1]], pos[bottom[1]]);
    return min({ans.cc, ans.cd, ans.dc, ans.dd});
}

Compilation message

catdog.cpp: In function 'int cat(int)':
catdog.cpp:173:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  173 |     for (int i = 0; i + 1 < v.size(); i++) {
      |                     ~~~~~~^~~~~~~~~~
catdog.cpp: In function 'int dog(int)':
catdog.cpp:216:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  216 |     for (int i = 0; i + 1 < v.size(); i++) {
      |                     ~~~~~~^~~~~~~~~~
catdog.cpp: In function 'int neighbor(int)':
catdog.cpp:248:13: warning: unused variable 'auix' [-Wunused-variable]
  248 |         int auix = 0;
      |             ^~~~
catdog.cpp:272:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  272 |     for (int i = 0; i + 1 < v.size(); i++) {
      |                     ~~~~~~^~~~~~~~~~
catdog.cpp: In function 'T query(int, int, int, int, int)':
catdog.cpp:71:1: warning: control reaches end of non-void function [-Wreturn-type]
   71 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10072 KB Output is correct
2 Correct 3 ms 10076 KB Output is correct
3 Correct 3 ms 10156 KB Output is correct
4 Correct 2 ms 10072 KB Output is correct
5 Correct 2 ms 10076 KB Output is correct
6 Correct 2 ms 10076 KB Output is correct
7 Correct 2 ms 10076 KB Output is correct
8 Correct 3 ms 10076 KB Output is correct
9 Correct 2 ms 10076 KB Output is correct
10 Correct 3 ms 10076 KB Output is correct
11 Correct 2 ms 10076 KB Output is correct
12 Correct 3 ms 10076 KB Output is correct
13 Correct 2 ms 10076 KB Output is correct
14 Correct 2 ms 10076 KB Output is correct
15 Correct 2 ms 10076 KB Output is correct
16 Correct 2 ms 10076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10072 KB Output is correct
2 Correct 3 ms 10076 KB Output is correct
3 Correct 3 ms 10156 KB Output is correct
4 Correct 2 ms 10072 KB Output is correct
5 Correct 2 ms 10076 KB Output is correct
6 Correct 2 ms 10076 KB Output is correct
7 Correct 2 ms 10076 KB Output is correct
8 Correct 3 ms 10076 KB Output is correct
9 Correct 2 ms 10076 KB Output is correct
10 Correct 3 ms 10076 KB Output is correct
11 Correct 2 ms 10076 KB Output is correct
12 Correct 3 ms 10076 KB Output is correct
13 Correct 2 ms 10076 KB Output is correct
14 Correct 2 ms 10076 KB Output is correct
15 Correct 2 ms 10076 KB Output is correct
16 Correct 2 ms 10076 KB Output is correct
17 Correct 3 ms 10076 KB Output is correct
18 Correct 4 ms 10076 KB Output is correct
19 Correct 3 ms 10076 KB Output is correct
20 Correct 2 ms 10072 KB Output is correct
21 Correct 3 ms 10076 KB Output is correct
22 Correct 3 ms 10076 KB Output is correct
23 Correct 4 ms 10072 KB Output is correct
24 Correct 4 ms 10072 KB Output is correct
25 Correct 3 ms 10072 KB Output is correct
26 Correct 3 ms 10076 KB Output is correct
27 Correct 2 ms 10076 KB Output is correct
28 Correct 3 ms 10332 KB Output is correct
29 Correct 4 ms 10332 KB Output is correct
30 Correct 3 ms 10076 KB Output is correct
31 Correct 3 ms 10076 KB Output is correct
32 Correct 3 ms 10076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10072 KB Output is correct
2 Correct 3 ms 10076 KB Output is correct
3 Correct 3 ms 10156 KB Output is correct
4 Correct 2 ms 10072 KB Output is correct
5 Correct 2 ms 10076 KB Output is correct
6 Correct 2 ms 10076 KB Output is correct
7 Correct 2 ms 10076 KB Output is correct
8 Correct 3 ms 10076 KB Output is correct
9 Correct 2 ms 10076 KB Output is correct
10 Correct 3 ms 10076 KB Output is correct
11 Correct 2 ms 10076 KB Output is correct
12 Correct 3 ms 10076 KB Output is correct
13 Correct 2 ms 10076 KB Output is correct
14 Correct 2 ms 10076 KB Output is correct
15 Correct 2 ms 10076 KB Output is correct
16 Correct 2 ms 10076 KB Output is correct
17 Correct 3 ms 10076 KB Output is correct
18 Correct 4 ms 10076 KB Output is correct
19 Correct 3 ms 10076 KB Output is correct
20 Correct 2 ms 10072 KB Output is correct
21 Correct 3 ms 10076 KB Output is correct
22 Correct 3 ms 10076 KB Output is correct
23 Correct 4 ms 10072 KB Output is correct
24 Correct 4 ms 10072 KB Output is correct
25 Correct 3 ms 10072 KB Output is correct
26 Correct 3 ms 10076 KB Output is correct
27 Correct 2 ms 10076 KB Output is correct
28 Correct 3 ms 10332 KB Output is correct
29 Correct 4 ms 10332 KB Output is correct
30 Correct 3 ms 10076 KB Output is correct
31 Correct 3 ms 10076 KB Output is correct
32 Correct 3 ms 10076 KB Output is correct
33 Correct 260 ms 16300 KB Output is correct
34 Correct 105 ms 16212 KB Output is correct
35 Correct 227 ms 15452 KB Output is correct
36 Correct 393 ms 21144 KB Output is correct
37 Correct 22 ms 12124 KB Output is correct
38 Correct 451 ms 21552 KB Output is correct
39 Correct 428 ms 21572 KB Output is correct
40 Correct 422 ms 21608 KB Output is correct
41 Correct 420 ms 21612 KB Output is correct
42 Correct 400 ms 21620 KB Output is correct
43 Correct 413 ms 21572 KB Output is correct
44 Correct 403 ms 21824 KB Output is correct
45 Correct 405 ms 21632 KB Output is correct
46 Correct 416 ms 21572 KB Output is correct
47 Correct 433 ms 21600 KB Output is correct
48 Correct 134 ms 20888 KB Output is correct
49 Correct 137 ms 24060 KB Output is correct
50 Correct 45 ms 12428 KB Output is correct
51 Correct 55 ms 16084 KB Output is correct
52 Correct 28 ms 12220 KB Output is correct
53 Correct 215 ms 22100 KB Output is correct
54 Correct 137 ms 15896 KB Output is correct
55 Correct 360 ms 21320 KB Output is correct
56 Correct 212 ms 16892 KB Output is correct
57 Correct 312 ms 21904 KB Output is correct
58 Correct 29 ms 16088 KB Output is correct
59 Correct 46 ms 13916 KB Output is correct
60 Correct 112 ms 23120 KB Output is correct
61 Correct 115 ms 23452 KB Output is correct
62 Correct 89 ms 21672 KB Output is correct
63 Correct 48 ms 18524 KB Output is correct
64 Correct 53 ms 20184 KB Output is correct
65 Correct 79 ms 26320 KB Output is correct
66 Correct 50 ms 13652 KB Output is correct
67 Correct 76 ms 23068 KB Output is correct
68 Correct 125 ms 26600 KB Output is correct
69 Correct 22 ms 11696 KB Output is correct
70 Correct 6 ms 10332 KB Output is correct
71 Correct 47 ms 18388 KB Output is correct
72 Correct 79 ms 25288 KB Output is correct
73 Correct 192 ms 29904 KB Output is correct
74 Correct 218 ms 26196 KB Output is correct
75 Correct 136 ms 29648 KB Output is correct
76 Correct 146 ms 28612 KB Output is correct
77 Correct 214 ms 26808 KB Output is correct