답안 #954362

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
954362 2024-03-27T16:48:11 Z GrindMachine Meetings 2 (JOI21_meetings2) C++17
100 / 100
488 ms 50880 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
 
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
 
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
 
template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}
 
template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}
 
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
 
/*
 
refs:
edi

odd c => ans = 1
assume c is even
let's say all nodes on the path (u,v) are good
then root the tree on the path (u,v)
path is good if the subtrees of u and v both have size >= c/2
(cuz only then c/2 nodes can be put into the subtrees of u and v)
 
however, if u is the ances of v (or vice versa), the condition checks become a little tedious
same condition still holds, but can't just check subtree sizes (cuz one is contained in another)

key idea:
root the tree at the centroid

this is a clean fix, because now (u,v) s.t u is an ances of v is unoptimal
(u,v) for u != centroid is suboptimal, because we can always do (centroid,v) (recall centroid properties)
no more corner cases to worry about

activate nodes in dec ord of subtree size
every time node is activated, find the farthest distance to another activated node
can be done by maintaining the diameter of the active tree (active tree always forms a connected subgraph) and updating as new nodes are activated

*/
 
const int MOD = 1e9 + 7;
const int N = 2e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
 
vector<ll> adj[N];
 
struct lca_algo {
    // LCA template (for graphs with 1-based indexing)
 
    int LOG = 1;
    vector<int> depth;
    vector<vector<int>> up;
    vector<int> tin, tout;
    int timer = 1;
 
    lca_algo() {
 
    }
 
    lca_algo(int n) {
        lca_init(n);
    }
 
    void lca_init(int n) {
        while ((1 << LOG) < n) LOG++;
        up = vector<vector<int>>(n + 1, vector<int>(LOG, 1));
        depth = vector<int>(n + 1);
        tin = vector<int>(n + 1);
        tout = vector<int>(n + 1);
 
        lca_dfs(1, -1);
    }
 
    void lca_dfs(int node, int par) {
        tin[node] = timer++;
 
        trav(child, adj[node]) {
            if (child == par) conts;
 
            up[child][0] = node;
            rep1(j, LOG - 1) {
                up[child][j] = up[up[child][j - 1]][j - 1];
            }
 
            depth[child] = depth[node] + 1;
 
            lca_dfs(child, node);
        }
 
        tout[node] = timer-1;
    }
 
    int lift(int u, int k) {
        rep(j, LOG) {
            if (k & (1 << j)) {
                u = up[u][j];
            }
        }
 
        return u;
    }
 
    int query(int u, int v) {
        if (depth[u] < depth[v]) swap(u, v);
        int k = depth[u] - depth[v];
        u = lift(u, k);
 
        if (u == v) return u;
 
        rev(j, LOG - 1, 0) {
            if (up[u][j] != up[v][j]) {
                u = up[u][j];
                v = up[v][j];
            }
        }
 
        u = up[u][0];
        return u;
    }
 
    int get_dis(int u, int v) {
        int lca = query(u, v);
        return depth[u] + depth[v] - 2 * depth[lca];
    }
 
    bool is_ances(int u, int v){
        return tin[u] <= tin[v] and tout[u] >= tout[v];
    }
};
 
vector<ll> subsiz(N), depth(N);
 
void dfs1(ll u, ll p){
    subsiz[u] = 1;
    trav(v,adj[u]){
        if(v == p) conts;
        depth[v] = depth[u]+1;
        dfs1(v,u);
        subsiz[u] += subsiz[v];
    }
}
 
ll dfs2(ll u, ll p){
    trav(v,adj[u]){
        if(v == p) conts;
        if(subsiz[v] > subsiz[1]/2){
            return dfs2(v,u);
        }
    }
  
    return u;
}
 
void solve(int test_case)
{
    ll n; cin >> n;
    rep1(i,n-1){
        ll u,v; cin >> u >> v;
        adj[u].pb(v), adj[v].pb(u);
    }
 
    dfs1(1,-1);
    ll r = dfs2(1,-1);    
    dfs1(r,-1);
 
    lca_algo LCA(n);
 
    vector<pll> order;
    rep1(i,n) order.pb({subsiz[i],i});
    sort(rall(order));
    vector<ll> ans(n+5);
    array<ll,3> diam = {0,r,r};
 
    for(auto [siz,u] : order){
        auto nxt_diam = diam;
        rep1(j,2){
            ll v = diam[j];
            array<ll,3> ar = {LCA.get_dis(u,v),u,v};
            amax(nxt_diam,ar);
        }
 
        diam = nxt_diam;
 
        rep1(j,2){
            ll v = diam[j];
            ll d = LCA.get_dis(u,v);
            amax(ans[siz],d);
        }
    }
 
    rev(i,n,1) amax(ans[i],ans[i+1]);
 
    rep1(i,n){
        if(i&1) cout << 1 << endl;
        else cout << ans[i/2]+1 << endl;
    }
}
 
int main()
{
    fastio;
 
    int t = 1;
    // cin >> t;
 
    rep1(i, t) {
        solve(i);
    }
 
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 8280 KB Output is correct
2 Correct 2 ms 8536 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8284 KB Output is correct
5 Correct 2 ms 8284 KB Output is correct
6 Correct 2 ms 8284 KB Output is correct
7 Correct 3 ms 8280 KB Output is correct
8 Correct 3 ms 8284 KB Output is correct
9 Correct 3 ms 8304 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
11 Correct 2 ms 8284 KB Output is correct
12 Correct 2 ms 8284 KB Output is correct
13 Correct 3 ms 8284 KB Output is correct
14 Correct 3 ms 8284 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8284 KB Output is correct
17 Correct 3 ms 8232 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8284 KB Output is correct
20 Correct 2 ms 8284 KB Output is correct
21 Correct 3 ms 8284 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 8280 KB Output is correct
2 Correct 2 ms 8536 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8284 KB Output is correct
5 Correct 2 ms 8284 KB Output is correct
6 Correct 2 ms 8284 KB Output is correct
7 Correct 3 ms 8280 KB Output is correct
8 Correct 3 ms 8284 KB Output is correct
9 Correct 3 ms 8304 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
11 Correct 2 ms 8284 KB Output is correct
12 Correct 2 ms 8284 KB Output is correct
13 Correct 3 ms 8284 KB Output is correct
14 Correct 3 ms 8284 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8284 KB Output is correct
17 Correct 3 ms 8232 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8284 KB Output is correct
20 Correct 2 ms 8284 KB Output is correct
21 Correct 3 ms 8284 KB Output is correct
22 Correct 5 ms 8796 KB Output is correct
23 Correct 6 ms 8796 KB Output is correct
24 Correct 5 ms 8796 KB Output is correct
25 Correct 6 ms 8796 KB Output is correct
26 Correct 6 ms 8796 KB Output is correct
27 Correct 6 ms 8796 KB Output is correct
28 Correct 5 ms 8796 KB Output is correct
29 Correct 6 ms 8796 KB Output is correct
30 Correct 6 ms 8796 KB Output is correct
31 Correct 7 ms 8796 KB Output is correct
32 Correct 7 ms 9052 KB Output is correct
33 Correct 5 ms 9052 KB Output is correct
34 Correct 5 ms 8796 KB Output is correct
35 Correct 5 ms 8792 KB Output is correct
36 Correct 5 ms 8796 KB Output is correct
37 Correct 5 ms 8796 KB Output is correct
38 Correct 6 ms 9048 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 8280 KB Output is correct
2 Correct 2 ms 8536 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8284 KB Output is correct
5 Correct 2 ms 8284 KB Output is correct
6 Correct 2 ms 8284 KB Output is correct
7 Correct 3 ms 8280 KB Output is correct
8 Correct 3 ms 8284 KB Output is correct
9 Correct 3 ms 8304 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
11 Correct 2 ms 8284 KB Output is correct
12 Correct 2 ms 8284 KB Output is correct
13 Correct 3 ms 8284 KB Output is correct
14 Correct 3 ms 8284 KB Output is correct
15 Correct 3 ms 8284 KB Output is correct
16 Correct 3 ms 8284 KB Output is correct
17 Correct 3 ms 8232 KB Output is correct
18 Correct 3 ms 8284 KB Output is correct
19 Correct 3 ms 8284 KB Output is correct
20 Correct 2 ms 8284 KB Output is correct
21 Correct 3 ms 8284 KB Output is correct
22 Correct 5 ms 8796 KB Output is correct
23 Correct 6 ms 8796 KB Output is correct
24 Correct 5 ms 8796 KB Output is correct
25 Correct 6 ms 8796 KB Output is correct
26 Correct 6 ms 8796 KB Output is correct
27 Correct 6 ms 8796 KB Output is correct
28 Correct 5 ms 8796 KB Output is correct
29 Correct 6 ms 8796 KB Output is correct
30 Correct 6 ms 8796 KB Output is correct
31 Correct 7 ms 8796 KB Output is correct
32 Correct 7 ms 9052 KB Output is correct
33 Correct 5 ms 9052 KB Output is correct
34 Correct 5 ms 8796 KB Output is correct
35 Correct 5 ms 8792 KB Output is correct
36 Correct 5 ms 8796 KB Output is correct
37 Correct 5 ms 8796 KB Output is correct
38 Correct 6 ms 9048 KB Output is correct
39 Correct 272 ms 45240 KB Output is correct
40 Correct 253 ms 45508 KB Output is correct
41 Correct 284 ms 45316 KB Output is correct
42 Correct 275 ms 46416 KB Output is correct
43 Correct 267 ms 46160 KB Output is correct
44 Correct 293 ms 46208 KB Output is correct
45 Correct 488 ms 48816 KB Output is correct
46 Correct 372 ms 50704 KB Output is correct
47 Correct 214 ms 47172 KB Output is correct
48 Correct 173 ms 46504 KB Output is correct
49 Correct 322 ms 46148 KB Output is correct
50 Correct 183 ms 46832 KB Output is correct
51 Correct 262 ms 50880 KB Output is correct