Submission #954362

#TimeUsernameProblemLanguageResultExecution timeMemory
954362GrindMachineMeetings 2 (JOI21_meetings2)C++17
100 / 100
488 ms50880 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; typedef long long int ll; typedef long double ld; typedef pair<int,int> pii; typedef pair<ll,ll> pll; #define fastio ios_base::sync_with_stdio(false); cin.tie(NULL) #define pb push_back #define endl '\n' #define sz(a) (int)a.size() #define setbits(x) __builtin_popcountll(x) #define ff first #define ss second #define conts continue #define ceil2(x,y) ((x+y-1)/(y)) #define all(a) a.begin(), a.end() #define rall(a) a.rbegin(), a.rend() #define yes cout << "Yes" << endl #define no cout << "No" << endl #define rep(i,n) for(int i = 0; i < n; ++i) #define rep1(i,n) for(int i = 1; i <= n; ++i) #define rev(i,s,e) for(int i = s; i >= e; --i) #define trav(i,a) for(auto &i : a) template<typename T> void amin(T &a, T b) { a = min(a,b); } template<typename T> void amax(T &a, T b) { a = max(a,b); } #ifdef LOCAL #include "debug.h" #else #define debug(x) 42 #endif /* refs: edi odd c => ans = 1 assume c is even let's say all nodes on the path (u,v) are good then root the tree on the path (u,v) path is good if the subtrees of u and v both have size >= c/2 (cuz only then c/2 nodes can be put into the subtrees of u and v) however, if u is the ances of v (or vice versa), the condition checks become a little tedious same condition still holds, but can't just check subtree sizes (cuz one is contained in another) key idea: root the tree at the centroid this is a clean fix, because now (u,v) s.t u is an ances of v is unoptimal (u,v) for u != centroid is suboptimal, because we can always do (centroid,v) (recall centroid properties) no more corner cases to worry about activate nodes in dec ord of subtree size every time node is activated, find the farthest distance to another activated node can be done by maintaining the diameter of the active tree (active tree always forms a connected subgraph) and updating as new nodes are activated */ const int MOD = 1e9 + 7; const int N = 2e5 + 5; const int inf1 = int(1e9) + 5; const ll inf2 = ll(1e18) + 5; vector<ll> adj[N]; struct lca_algo { // LCA template (for graphs with 1-based indexing) int LOG = 1; vector<int> depth; vector<vector<int>> up; vector<int> tin, tout; int timer = 1; lca_algo() { } lca_algo(int n) { lca_init(n); } void lca_init(int n) { while ((1 << LOG) < n) LOG++; up = vector<vector<int>>(n + 1, vector<int>(LOG, 1)); depth = vector<int>(n + 1); tin = vector<int>(n + 1); tout = vector<int>(n + 1); lca_dfs(1, -1); } void lca_dfs(int node, int par) { tin[node] = timer++; trav(child, adj[node]) { if (child == par) conts; up[child][0] = node; rep1(j, LOG - 1) { up[child][j] = up[up[child][j - 1]][j - 1]; } depth[child] = depth[node] + 1; lca_dfs(child, node); } tout[node] = timer-1; } int lift(int u, int k) { rep(j, LOG) { if (k & (1 << j)) { u = up[u][j]; } } return u; } int query(int u, int v) { if (depth[u] < depth[v]) swap(u, v); int k = depth[u] - depth[v]; u = lift(u, k); if (u == v) return u; rev(j, LOG - 1, 0) { if (up[u][j] != up[v][j]) { u = up[u][j]; v = up[v][j]; } } u = up[u][0]; return u; } int get_dis(int u, int v) { int lca = query(u, v); return depth[u] + depth[v] - 2 * depth[lca]; } bool is_ances(int u, int v){ return tin[u] <= tin[v] and tout[u] >= tout[v]; } }; vector<ll> subsiz(N), depth(N); void dfs1(ll u, ll p){ subsiz[u] = 1; trav(v,adj[u]){ if(v == p) conts; depth[v] = depth[u]+1; dfs1(v,u); subsiz[u] += subsiz[v]; } } ll dfs2(ll u, ll p){ trav(v,adj[u]){ if(v == p) conts; if(subsiz[v] > subsiz[1]/2){ return dfs2(v,u); } } return u; } void solve(int test_case) { ll n; cin >> n; rep1(i,n-1){ ll u,v; cin >> u >> v; adj[u].pb(v), adj[v].pb(u); } dfs1(1,-1); ll r = dfs2(1,-1); dfs1(r,-1); lca_algo LCA(n); vector<pll> order; rep1(i,n) order.pb({subsiz[i],i}); sort(rall(order)); vector<ll> ans(n+5); array<ll,3> diam = {0,r,r}; for(auto [siz,u] : order){ auto nxt_diam = diam; rep1(j,2){ ll v = diam[j]; array<ll,3> ar = {LCA.get_dis(u,v),u,v}; amax(nxt_diam,ar); } diam = nxt_diam; rep1(j,2){ ll v = diam[j]; ll d = LCA.get_dis(u,v); amax(ans[siz],d); } } rev(i,n,1) amax(ans[i],ans[i+1]); rep1(i,n){ if(i&1) cout << 1 << endl; else cout << ans[i/2]+1 << endl; } } int main() { fastio; int t = 1; // cin >> t; rep1(i, t) { solve(i); } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...