답안 #954127

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
954127 2024-03-27T10:23:55 Z gaga999 Sandcastle 2 (JOI22_ho_t5) C++17
100 / 100
402 ms 21384 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
 #pragma GCC optimize("Ofast,no-stack-protector")
 //#pragma GCC optimize("O3,unroll-loops")
 #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;
 
// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);
 
void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }
 
inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}
 
template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}
 
vector<vector<int>> gd, v[3][3][3][3], v1[3][3], v2[3][3], vr;
#define p1 [x - 1][y]
#define p2 [x][y - 1]
#define p3 [x][y + 1]
#define p4 [x + 1][y]
#define c1 x != l
#define c2 y != u
#define c3 y != d
#define c4 x != r
int gv(int x, int y, int l, int r, int u, int d)
{
    int mn = INF, cr = gd[x][y], res = 0;
    if (c1 && gd p1 > cr && gd p1 < mn)
        mn = gd p1, res = 1;
    if (c2 && gd p2 > cr && gd p2 < mn)
        mn = gd p2, res = 2;
    if (c3 && gd p3 > cr && gd p3 < mn)
        mn = gd p3, res = 3;
    if (c4 && gd p4 > cr && gd p4 < mn)
        mn = gd p4, res = 4;
    return res;
}
#define pp l, r, u, d
int slv(int x, int y, int l, int r, int u, int d)
{
    if (c1 && gv(x - 1, y, pp) == 4)
        return 0;
    if (c2 && gv(x, y - 1, pp) == 3)
        return 0;
    if (c3 && gv(x, y + 1, pp) == 2)
        return 0;
    if (c4 && gv(x + 1, y, pp) == 1)
        return 0;
    return 1;
}
#define vt(i, j) vector<vector<int>>(i, vector<int>(j))
int cnt[50004];
signed main()
{
    int n, m;
    rd(n, m);
    if (n > m)
    {
        swap(n, m);
        gd = vt(n, m);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                rd(gd[j][i]);
    }
    else
    {
        gd = vt(n, m);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                rd(gd[i][j]);
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            for (int u = 0; u < 3; u++)
            {
                for (int d = 0; d < 3; d++)
                {
                    v[l][r][u][d] = vt(n, m);
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < m; j++)
                            v[l][r][u][d][i][j] =
                                slv(i, j, max(0, i - l), min(n - 1, i + r), max(0, j - u), min(m - 1, j + d));
                }
            }
        }
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            v1[l][r] = v2[l][r] = vt(n, m);
            for (int i = 0; i < n; i++)
            {
                v1[l][r][i][0] = v[l][r][2][2][i][0];
                for (int j = 1; j < m; j++)
                    v1[l][r][i][j] = v[l][r][2][2][i][j] + v1[l][r][i][j - 1];
            }
            for (int j = 0; j < m; j++)
            {
                v2[l][r][0][j] = v[2][2][l][r][0][j];
                for (int i = 1; i < n; i++)
                    v2[l][r][i][j] = v[2][2][l][r][i][j] + v2[l][r][i - 1][j];
            }
        }
    }
    vr = vt(n, m);
    for (int i = 0; i < m; i++)
        vr[0][i] = v[2][2][2][2][0][i];
    for (int i = 1; i < n; i++)
    {
        vr[i][0] = v[2][2][2][2][0][i];
        for (int j = 1; j < m; j++)
        {
            vr[i][j] = vr[i - 1][j] + vr[i][j - 1] -
                       vr[i - 1][j - 1] + v[2][2][2][2][i][j];
        }
    }
    llt ans = 0;
    for (int l = 0; l < n; l++)
    {
        for (int r = l; r < n; r++)
        {
            if (r - l < 4)
            {
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] + v[x][y][2][1][a][i - 1] + v[x][y][2][0][a][i];
                    }
                    ans += cnt[tp];
                }
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int a = l; a <= r; a++)
                            for (int b = i; b <= j; b++)
                                tp += v[min(2, a - l)][min(2, r - a)][min(2, b - i)][min(2, j - b)][a][b];
                        if (tp == 1)
                            ans++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int b = i; b <= j; b++)
                        {
                            int x = min(b - i, 2), y = min(j - b, 2);
                            tp += v[0][2][x][y][l][b];
                            tp += v[1][2][x][y][l + 1][b];
                            tp += v[2][0][x][y][r][b];
                            tp += v[2][1][x][y][r - 1][b];
                            tp += v2[x][y][r - 2][b] - v2[x][y][l + 1][b];
                        }
                        if (tp == 1)
                            ans++;
                    }
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    tp += v1[0][2][l][i - 2] + v[0][2][2][0][l][i] + v[0][2][2][1][l][i - 1];
                    tp += v1[1][2][l + 1][i - 2] + v[1][2][2][0][l + 1][i] + v[1][2][2][1][l + 1][i - 1];
                    tp += v1[2][0][r][i - 2] + v[2][0][2][0][r][i] + v[2][0][2][1][r][i - 1];
                    tp += v1[2][1][r - 1][i - 2] + v[2][1][2][0][r - 1][i] + v[2][1][2][1][r - 1][i - 1];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] +
                          v2[2][0][r - 2][i] - v2[2][0][l + 1][i] +
                          v2[2][1][r - 2][i - 1] - v2[2][1][l + 1][i - 1];
                    ans += cnt[tp];
                }
            }
            memset(cnt, 0, (r - l + 1) * m * 4);
        }
    }
    prt(ans), putchar('\n');
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 46 ms 20464 KB Output is correct
3 Correct 47 ms 20224 KB Output is correct
4 Correct 57 ms 20624 KB Output is correct
5 Correct 44 ms 20624 KB Output is correct
6 Correct 59 ms 20516 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 500 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 500 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1368 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1112 KB Output is correct
14 Correct 3 ms 860 KB Output is correct
15 Correct 5 ms 1116 KB Output is correct
16 Correct 6 ms 1116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 500 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1368 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1112 KB Output is correct
14 Correct 3 ms 860 KB Output is correct
15 Correct 5 ms 1116 KB Output is correct
16 Correct 6 ms 1116 KB Output is correct
17 Correct 7 ms 3420 KB Output is correct
18 Correct 28 ms 3416 KB Output is correct
19 Correct 20 ms 3168 KB Output is correct
20 Correct 21 ms 3416 KB Output is correct
21 Correct 20 ms 3672 KB Output is correct
22 Correct 22 ms 3420 KB Output is correct
23 Correct 21 ms 3420 KB Output is correct
24 Correct 19 ms 3164 KB Output is correct
25 Correct 29 ms 3532 KB Output is correct
26 Correct 26 ms 3420 KB Output is correct
27 Correct 30 ms 3416 KB Output is correct
28 Correct 29 ms 3420 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 500 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1368 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1112 KB Output is correct
14 Correct 3 ms 860 KB Output is correct
15 Correct 5 ms 1116 KB Output is correct
16 Correct 6 ms 1116 KB Output is correct
17 Correct 7 ms 3420 KB Output is correct
18 Correct 28 ms 3416 KB Output is correct
19 Correct 20 ms 3168 KB Output is correct
20 Correct 21 ms 3416 KB Output is correct
21 Correct 20 ms 3672 KB Output is correct
22 Correct 22 ms 3420 KB Output is correct
23 Correct 21 ms 3420 KB Output is correct
24 Correct 19 ms 3164 KB Output is correct
25 Correct 29 ms 3532 KB Output is correct
26 Correct 26 ms 3420 KB Output is correct
27 Correct 30 ms 3416 KB Output is correct
28 Correct 29 ms 3420 KB Output is correct
29 Correct 37 ms 20632 KB Output is correct
30 Correct 188 ms 20580 KB Output is correct
31 Correct 399 ms 21100 KB Output is correct
32 Correct 56 ms 20308 KB Output is correct
33 Correct 328 ms 21384 KB Output is correct
34 Correct 318 ms 21304 KB Output is correct
35 Correct 142 ms 13940 KB Output is correct
36 Correct 215 ms 20824 KB Output is correct
37 Correct 351 ms 21024 KB Output is correct
38 Correct 368 ms 21144 KB Output is correct
39 Correct 349 ms 21032 KB Output is correct
40 Correct 371 ms 21076 KB Output is correct
41 Correct 346 ms 21024 KB Output is correct
42 Correct 402 ms 21244 KB Output is correct
43 Correct 362 ms 21024 KB Output is correct
44 Correct 383 ms 21028 KB Output is correct