Submission #952827

# Submission time Handle Problem Language Result Execution time Memory
952827 2024-03-25T01:46:57 Z gaga999 Mountains and Valleys (CCO20_day1problem3) C++17
3 / 25
40 ms 91284 KB
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define size(x) (int)x.size()
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define int long long
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

const int N = 5e5 + 5, M = 2e6 + 6;
vector<int> eg[N];
int xr[M], yr[M], wr[M], a1[M];
int in[N], ou[N], ct, ac[20][N];
int mx[N], sc[N], th[N], dp[N], ans;
vector<int> q1[N], q2[N];

void dfs(int u, int fa)
{
    in[u] = ++ct;
    for (int v : eg[u])
    {
        if (v == fa)
            continue;
        ac[0][v] = u, dp[v] = dp[u] + 1;
        for (int i = 1; i < 20; i++)
            ac[i][v] = ac[i - 1][ac[i - 1][v]];
        dfs(v, u);
        tmax(th[u], mx[v] + 1);
        if (th[u] > sc[u])
            swap(th[u], sc[u]);
        if (sc[u] > mx[u])
            swap(mx[u], sc[u]);
    }
    tmax(ans, mx[u] + sc[u]), ou[u] = ct;
}

inline bool isa(int a, int p)
{
    return in[a] <= in[p] && ou[p] <= ou[a];
}

inline int lca(int u, int v)
{
    if (isa(u, v))
        return u;
    for (int i = 19; i >= 0; i--)
        if (ac[i][u] && !isa(ac[i][u], v))
            u = ac[i][u];
    return ac[0][u];
}

inline int jp(int a, int u)
{
    for (int i = 19; i >= 0; i--)
        if (ac[i][u] && !isa(ac[i][u], a))
            u = ac[i][u];
    return u;
}

struct P
{
    int vp, vn, ans;
    P() { vp = vn = ans = -INF; }
    inline void ini() { vp = vn = ans = -INF; }
    P operator+(const P &rh)
    {
        P res;
        res.ans = max({ans, vp + rh.vn, rh.ans});
        res.vp = max(vp, rh.vp);
        res.vn = max(vn, rh.vn);
        return res;
    }
} tr[N << 2], vv;

void cg(int l, int r, int id, int p, int v)
{
    if (l == r)
    {
        tr[id].vp = v + p;
        tr[id].vn = v - p;
        tr[id].ans = -INF;
        return;
    }
    int m = (l + r) >> 1;
    if (p <= m)
        cg(l, m, ls(id), p, v);
    else
        cg(m + 1, r, rs(id), p, v);
    tr[id] = tr[ls(id)] + tr[rs(id)];
}

void qy(int l, int r, int id, int ql, int qr)
{
    if (ql <= l && r <= qr)
    {
        vv = vv + tr[id];
        return;
    }
    int m = (l + r) >> 1;
    if (ql <= m)
        qy(l, m, ls(id), ql, qr);
    if (qr > m)
        qy(m + 1, r, rs(id), ql, qr);
}

void slv(int u, int fa)
{
    for (int v : eg[u])
    {
        if (v == fa)
            continue;
        cg(1, ct, 1, dp[u], mx[v] + 1 == mx[u] ? sc[u] : mx[u]);
        slv(v, u);
    }
    cg(1, ct, 1, dp[u], mx[u]);
    for (int i : q1[u])
    {
        vv.ini(), qy(1, ct, 1, dp[xr[i]] + 1, dp[u]);
        tmin(ans, wr[i] - (vv.ans + dp[u] - dp[xr[i]]));
        // vv.ini(), qy(1, ct, 1, dp[xr[i]] + 1, dp[u]);
        int tp = vv.vn + dp[u] + dp[xr[i]];
        vv.ini(), qy(1, ct, 1, 1, dp[xr[i]]);
        tmin(ans, wr[i] - (tp + vv.vn));
    }
    for (int i : q2[u])
    {
        int p = lca(xr[i], yr[i]);
        // vv.ini(), qy(1, ct, 1, dp[p], dp[u]);
        // db(dp[p], p, u, xr[i], yr[i], ans);
        vv.ini(), qy(1, ct, 1, dp[p] + 1, dp[u]);
        tmin(ans, wr[i] - (vv.ans + dp[xr[i]] + dp[yr[i]] - (dp[p] << 1)));
        if (xr[i] == u)
            a1[i] = vv.vn;
        else
            tmin(ans, wr[i] - (vv.vn + a1[i] + dp[xr[i]] + dp[yr[i]]));
        int tp = dp[xr[i]] + dp[yr[i]] + vv.vn;
        int v1 = mx[jp(p, xr[i])] + 1, v2 = mx[jp(p, yr[i])] + 1;
        if (v1 < v2)
            swap(v1, v2);
        if (v1 != mx[p])
            tmin(ans, wr[i] - (tp - dp[p] + mx[p]));
        else if (v2 != sc[p])
            tmin(ans, wr[i] - (tp - dp[p] + sc[p]));
        else
            tmin(ans, wr[i] - (tp - dp[p] + th[p]));
        if (ac[0][p])
        {
            vv.ini(), qy(1, ct, 1, 1, dp[p] - 1);
            tmin(ans, wr[i] - (tp + vv.vn));
        }
    }
}

signed main()
{
    int n, m;
    rd(n, m);
    // assert(n == 6);
    for (int i = 0; i < m; i++)
    {
        rd(xr[i], yr[i], wr[i]), xr[i]++, yr[i]++;
        if (wr[i] == 1)
            eg[xr[i]].pb(yr[i]), eg[yr[i]].pb(xr[i]);
    }
    int rt = 1;
    dp[rt] = 1, dfs(rt, -1), ans = ((n - 1) << 1) - ans;
    int pans = ans;
    for (int i = 0; i < m; i++)
    {
        assert(xr[i] != yr[i]);
        if (wr[i] == 1)
            continue;
        wr[i] += (n - 2) << 1;
        if (in[xr[i]] > in[yr[i]])
            swap(xr[i], yr[i]);
        if (isa(xr[i], yr[i]))
            q1[yr[i]].pb(i);
        else
            q2[xr[i]].pb(i), q2[yr[i]].pb(i);
    }
    slv(rt, -1);
    assert(ans <= pans);
    prt(ans), putchar('\n');
}
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
16 Correct 17 ms 91228 KB Output is correct
17 Correct 16 ms 89016 KB Output is correct
18 Incorrect 18 ms 91228 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 27 ms 87132 KB Output is correct
2 Correct 34 ms 87380 KB Output is correct
3 Correct 28 ms 89044 KB Output is correct
4 Correct 27 ms 86816 KB Output is correct
5 Correct 40 ms 86872 KB Output is correct
6 Correct 31 ms 86620 KB Output is correct
7 Correct 37 ms 87128 KB Output is correct
8 Correct 39 ms 87060 KB Output is correct
9 Correct 39 ms 87204 KB Output is correct
10 Correct 32 ms 86836 KB Output is correct
11 Correct 33 ms 86884 KB Output is correct
12 Correct 38 ms 86900 KB Output is correct
13 Correct 33 ms 86888 KB Output is correct
14 Correct 34 ms 87076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
16 Correct 17 ms 91228 KB Output is correct
17 Correct 16 ms 89016 KB Output is correct
18 Incorrect 18 ms 91228 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
16 Correct 17 ms 91228 KB Output is correct
17 Correct 16 ms 89016 KB Output is correct
18 Incorrect 18 ms 91228 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
16 Correct 17 ms 91228 KB Output is correct
17 Correct 16 ms 89016 KB Output is correct
18 Incorrect 18 ms 91228 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
16 Correct 17 ms 91228 KB Output is correct
17 Correct 16 ms 89016 KB Output is correct
18 Incorrect 18 ms 91228 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 40 ms 89196 KB Output is correct
2 Correct 17 ms 89176 KB Output is correct
3 Correct 16 ms 89008 KB Output is correct
4 Correct 23 ms 85084 KB Output is correct
5 Correct 19 ms 85084 KB Output is correct
6 Correct 18 ms 84920 KB Output is correct
7 Correct 19 ms 85080 KB Output is correct
8 Correct 20 ms 85084 KB Output is correct
9 Correct 18 ms 85084 KB Output is correct
10 Correct 19 ms 85084 KB Output is correct
11 Correct 24 ms 85072 KB Output is correct
12 Correct 22 ms 85080 KB Output is correct
13 Correct 18 ms 91228 KB Output is correct
14 Correct 17 ms 91284 KB Output is correct
15 Correct 17 ms 91228 KB Output is correct
16 Correct 17 ms 91228 KB Output is correct
17 Correct 16 ms 89016 KB Output is correct
18 Incorrect 18 ms 91228 KB Output isn't correct
19 Halted 0 ms 0 KB -