Submission #952160

# Submission time Handle Problem Language Result Execution time Memory
952160 2024-03-23T07:35:03 Z kilkuwu Vision Program (IOI19_vision) C++17
32 / 100
5 ms 1980 KB
#ifndef LOCAL
#include "vision.h"
#else
#include <vector>

void construct_network(int H, int W, int K);

int add_and(std::vector<int> Ns);

int add_or(std::vector<int> Ns);

int add_xor(std::vector<int> Ns);

int add_not(int N);
#endif

#include <bits/stdc++.h>

#ifdef LOCAL
#include "template\debug.hpp"
#else
#define dbg(...) ;
#define timer(...) ;
#endif

void construct_network(int H, int W, int K) {
  auto get_id = [&](int i, int j) -> int {
    return i * W + j;
  };

  std::vector<int> all_cells(H * W);
  std::iota(all_cells.begin(), all_cells.end(), 0);
  std::vector<std::vector<int>> rows(H);
  std::vector<std::vector<int>> cols(W);

  for (int i = 0; i < H; i++) {
    rows[i].resize(W);
    for (int j = 0; j < W; j++) {
      rows[i][j] = get_id(i, j);
    }
  }

  for (int j = 0; j < W; j++) {
    cols[j].resize(H);
    for (int i = 0; i < H; i++) {
      cols[j][i] = get_id(i, j);
    }
  }

  int zero_index = add_xor(all_cells);

  dbg(zero_index);

  if (H * W == 2 && K != 1) {
    return;
  }

  int one_index = add_not(zero_index); 
  dbg(one_index);
  
  if (H * W == 2 && K == 1) {
    return;
  }

  constexpr int NUM_BITS = 9;

  using Number = std::array<int, NUM_BITS>;

  auto make_number = [&](int i) {
    dbg(i);
    Number rep;
    for (int b = 0; b < NUM_BITS; b++) {
      if (i >> b & 1) {
        rep[b] = add_not(zero_index);
      } else {
        rep[b] = add_not(one_index);
      }
    }
    return rep;
  };

  std::vector<Number> numbers(512, {-1}); // 512 numbers
  
  auto get_number = [&](int i) {
    if (numbers[i][0] == -1) {
      numbers[i] = make_number(i);
    }
    return numbers[i];
  };
  
  auto apply_multiplier = [&](int index, Number num) {
    Number res;
    for (int i = 0; i < NUM_BITS; i++) {
      res[i] = add_and({index, num[i]});
    }
    return res;
  };

  auto add_number = [&](Number a, Number b) {
    int carry_bit = zero_index;
    Number c;
    for (int i = 0; i < NUM_BITS; i++) {
      int pxor = add_xor({a[i], b[i]}); // xor of two values
      c[i] = add_xor({pxor, carry_bit});
      int pand = add_and({a[i], b[i]});
      int cand = add_and({pxor, carry_bit});
      carry_bit = add_or({pand, cand});
    }
    return c;
  };

  auto flip_sign = [&](Number a) {
    Number res;
    for (int i = 0; i < NUM_BITS; i++) {
      res[i] = add_not(a[i]);
    }
    return add_number(res, get_number(1));
  };

  auto sub_number = [&](Number a, Number b) {
    return add_number(a, flip_sign(b));
  };

  auto get_distance = [&](std::vector<int> cells) {
    dbg(cells);
    int sz = cells.size();
    auto value_left = get_number(0);
    int multiplier = one_index;
    dbg(value_left, multiplier);

    for (int i = 0; i < sz; i++) {
      int tot_multiplier = add_and({cells[i], multiplier});
      value_left = add_number(value_left, apply_multiplier(tot_multiplier, get_number(i)));
      int not_cell = add_not(cells[i]);
      multiplier = add_and({multiplier, not_cell});
    }

    auto value_right = get_number(0);
    multiplier = one_index;

    for (int i = sz - 1; i >= 0; i--) {
      int tot_multiplier = add_and({cells[i], multiplier});
      value_right = add_number(value_right, apply_multiplier(tot_multiplier, get_number(i)));
      int not_cell = add_not(cells[i]);
      multiplier = add_and({multiplier, not_cell});
    }

    return sub_number(value_right, value_left);
  };

  auto compare_number = [&](Number a, Number b) {
    std::vector<int> to_or;
    Number c;
    for (int i = 0; i < NUM_BITS; i++) {
      c[i] = add_xor({a[i], b[i]});
      to_or.push_back(c[i]);
    }

    int res = add_or(to_or);
    add_not(res);
  };

  std::vector<int> or_rows(H), or_cols(W);

  for (int i = 0; i < H; i++) {
    dbg(rows[i]);
    or_rows[i] = add_or(rows[i]);
    dbg(or_rows[i]);
  }

  for (int j = 0; j < W; j++) {
    dbg(cols[j]);
    or_cols[j] = add_or(cols[j]);
    dbg(or_cols[j]);
  }

  auto dx = get_distance(or_rows);
  auto dy = get_distance(or_cols);
  auto tot = add_number(dx, dy);

  compare_number(tot, get_number(K));
}

#ifdef LOCAL

#include <cstdio>
#include <cassert>
#include <string>

using namespace std;

static const int MAX_INSTRUCTIONS = 10000;
static const int MAX_INPUTS = 1000000;

static const int _AND = 0;
static const int _OR = 1;
static const int _XOR = 2;
static const int _NOT = 3;

static inline bool increasing(int a, int b, int c) {
	return a <= b && b <= c;
}

[[noreturn]] static inline void error(string message) {
	printf("%s\n", message.c_str());
	exit(0);
}

class InstructionNetwork {

	struct Instruction {
		int type;
		vector<int> input_indexes;

		inline Instruction(int _type, const vector<int>& _input_indexes):
				type(_type), input_indexes(_input_indexes) {
		}

		inline int apply(int a, int b) const {
			switch (type) {
				case _AND:
					return a & b;
				case _OR:
					return a | b;
				case _XOR:
					return a ^ b;
				default:
					return 0;
			}
		}

		inline int compute(const vector<int>& memory_cells) const {
			int r = memory_cells[input_indexes[0]];
			if (type == _NOT)
				return 1 - r;
			for (int j = 1; j < (int)input_indexes.size(); j++)
				r = apply(r, memory_cells[input_indexes[j]]);
			return r;
		}
	};

	int input_size;
	int total_inputs;
	vector<Instruction> instructions;

public:

	inline void init(int _input_size) {
		this->input_size = _input_size;
		this->total_inputs = 0;
		this->instructions.clear();
	}

	inline int add_instruction(int type, const vector<int>& input_indexes) {
		if (input_indexes.size() == 0)
			error("Instruction with no inputs");

		if (instructions.size() + 1 > MAX_INSTRUCTIONS)
			error("Too many instructions");

		if (total_inputs + input_indexes.size() > MAX_INPUTS)
			error("Too many inputs");

		instructions.emplace_back(type, input_indexes);
		total_inputs += input_indexes.size();
		int new_index = input_size + (int)instructions.size() - 1;

		for (int input_index : input_indexes)
			if (!increasing(0, input_index, new_index-1))
				error("Invalid index");

		return new_index;
	}

	inline int compute(vector<int> &memory_cells) const {
		for (auto &instruction : instructions)
			memory_cells.push_back(instruction.compute(memory_cells));
		return memory_cells.back();
	}
};


static InstructionNetwork instructionNetwork;

int main() {
	int H, W, K;
	assert(3 == scanf("%d%d%d", &H, &W, &K));

	FILE *log_file = fopen("log.txt","w");

	instructionNetwork.init(H * W);
	construct_network(H, W, K);

	while (true) {
		int rowA, colA, rowB, colB;
		assert(1 == scanf("%d", &rowA));
		if (rowA == -1)
			break;
		assert(3 == scanf("%d%d%d", &colA, &rowB, &colB));

		if ((!increasing(0, rowA, H-1)) ||
			(!increasing(0, colA, W-1)) ||
			(!increasing(0, rowB, H-1)) ||
			(!increasing(0, colB, W-1)) ||
			(rowA == rowB && colA == colB)) {
			printf("-1\n");
			fprintf(log_file, "-1\n");
			fflush(stdout);
			fflush(log_file);
			continue;
		}

		vector<int> memory_cells;
		for (int row = 0; row < H; row++)
			for (int col = 0; col < W; col++) {
				bool active = (row == rowA && col == colA) || (row == rowB && col == colB);
				memory_cells.push_back(active ? 1 : 0);
			}
		int computation_result = instructionNetwork.compute(memory_cells);

		printf("%d\n", computation_result);
		fflush(stdout);

		for(int i = 0; i < (int)memory_cells.size(); i++)
			fprintf(log_file, (i ? " %d" : "%d"), memory_cells[i]);
		fprintf(log_file, "\n");
		fflush(log_file);
	}
	fclose(stdin);
}

int add_and(vector<int> Ns) {
	return instructionNetwork.add_instruction(_AND, Ns);
}

int add_or(vector<int> Ns) {
	return instructionNetwork.add_instruction(_OR, Ns);
}

int add_xor(vector<int> Ns) {
	return instructionNetwork.add_instruction(_XOR, Ns);
}

int add_not(int N) {
	vector<int> Ns = {N};
	return instructionNetwork.add_instruction(_NOT, Ns);
}

#endif
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 2 ms 604 KB Output is correct
22 Correct 1 ms 440 KB Output is correct
23 Correct 2 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 600 KB Output is correct
26 Correct 3 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 2 ms 604 KB Output is correct
22 Correct 1 ms 440 KB Output is correct
23 Correct 2 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 600 KB Output is correct
26 Correct 3 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 5 ms 1236 KB Output is correct
29 Correct 2 ms 604 KB Output is correct
30 Correct 2 ms 604 KB Output is correct
31 Correct 3 ms 860 KB Output is correct
32 Correct 3 ms 860 KB Output is correct
33 Correct 4 ms 812 KB Output is correct
34 Correct 4 ms 984 KB Output is correct
35 Correct 3 ms 984 KB Output is correct
36 Correct 4 ms 980 KB Output is correct
37 Correct 4 ms 984 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 2 ms 604 KB Output is correct
22 Correct 1 ms 440 KB Output is correct
23 Correct 2 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 600 KB Output is correct
26 Correct 3 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 5 ms 1236 KB Output is correct
29 Correct 2 ms 604 KB Output is correct
30 Correct 2 ms 604 KB Output is correct
31 Correct 3 ms 860 KB Output is correct
32 Correct 3 ms 860 KB Output is correct
33 Correct 4 ms 812 KB Output is correct
34 Correct 4 ms 984 KB Output is correct
35 Correct 3 ms 984 KB Output is correct
36 Correct 4 ms 980 KB Output is correct
37 Correct 4 ms 984 KB Output is correct
38 Incorrect 2 ms 1372 KB WA in grader: Too many instructions
39 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 1240 KB WA in grader: Too many instructions
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Incorrect 2 ms 1368 KB WA in grader: Too many instructions
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 1980 KB WA in grader: Too many instructions
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 2 ms 604 KB Output is correct
22 Correct 1 ms 440 KB Output is correct
23 Correct 2 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 600 KB Output is correct
26 Correct 3 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 5 ms 1236 KB Output is correct
29 Correct 2 ms 604 KB Output is correct
30 Correct 2 ms 604 KB Output is correct
31 Correct 3 ms 860 KB Output is correct
32 Correct 3 ms 860 KB Output is correct
33 Correct 4 ms 812 KB Output is correct
34 Correct 4 ms 984 KB Output is correct
35 Correct 3 ms 984 KB Output is correct
36 Correct 4 ms 980 KB Output is correct
37 Correct 4 ms 984 KB Output is correct
38 Incorrect 2 ms 1372 KB WA in grader: Too many instructions
39 Halted 0 ms 0 KB -