#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <functional>
#include <cstdio>
#define pb push_back
#define in insert
#define pll pair<ll,ll>
#define vpl vector<pll>
#define vll vector <ll>
#define vl vector<ll>
///#define mp make_pair
#define F first
#define S second
#define all(v) v.begin(),v.end()
#define endl "\n"
#define ll long long
#define ull unsigned long long
using namespace std;
using namespace __gnu_pbds;
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt,fma")
const ll sz=1e5+5;
const ll inf=1e18;
const ll mod=1e9+7;
const ll P=47;
namespace number_theory {
ll gcd(ll x, ll y) {
if (x == 0) return y;
if (y == 0) return x;
return gcd(y, x % y);
}
ll lcm(ll x,ll y)
{
return (x/gcd(x,y))*y;
}
bool isprime(ll n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (ll i = 5; i * i <= n; i += 6)
if (n % i == 0 || n % (i+2) == 0)
return false;
return true;
}
bool prime[15000105];
void sieve(int n) {
for (ll i = 0; i <= n; i++) prime[i] = 1;
for (ll p = 2; p * p <= n; p++) {
if (prime[p] == true) {
for (ll i = p * p; i <= n; i += p)
prime[i] = false;
}
}
prime[1] = prime[0] = 0;
}
vector<ll> primelist;
bool __primes_generated__ = 0;
void genprimes(int n) {
__primes_generated__ = 1;
sieve(n + 1);
for (ll i = 2; i <= n; i++) if (prime[i]) primelist.push_back(i);
}
vector<ll> factors(ll n) {
if (!__primes_generated__) {
cerr << "False" << endl;
exit(1);
}
vector<ll> facs;
for (ll i = 0; primelist[i] * primelist[i] <= n && i < primelist.size(); i++) {
if (n % primelist[i] == 0) {
while (n % primelist[i] == 0) {
n /= primelist[i];
facs.push_back(primelist[i]);
}
}
}
if (n > 1) {
facs.push_back(n);
}
sort(facs.begin(), facs.end());
return facs;
}
vector<ll> getdivs(ll n) {
vector<ll> divs;
for (ll i = 1; i * i <= n; i++) {
if (n % i == 0) {
divs.push_back(i);
divs.push_back(n / i);
}
}
set <ll> s;
for(ll i: divs)
s.in(i);
vll res;
for(auto i: s)
res.pb(i);
return res;
}
}
namespace modop {
ll madd(ll a, ll b) {
return (a + b) % mod;
}
ll msub(ll a, ll b) {
return (((a - b) % mod) + mod) % mod;
}
ll mmul(ll a, ll b) {
return ((a % mod) * (b % mod)) % mod;
}
ll mpow(ll base, ll exp) {
ll res = 1;
while (exp) {
if (exp % 2 == 1){
res = (res * base) % mod;
}
exp >>= 1;
base = (base * base) % mod;
}
return res;
}
ll minv(ll base) {
return mpow(base, mod - 2);
}
ll mdiv(ll a, ll b) {
return mmul(a, minv(b));
}
const ll FACTORIAL_SIZE = 1.1e6;
ll fact[FACTORIAL_SIZE], ifact[FACTORIAL_SIZE];
bool __factorials_generated__ = 0;
void gen_factorial(ll n) {
__factorials_generated__ = 1;
fact[0] = fact[1] = ifact[0] = ifact[1] = 1;
for (ll i = 2; i <= n; i++) {
fact[i] = (i * fact[i - 1]) % mod;
}
ifact[n] = minv(fact[n]);
for (ll i = n - 1; i >= 2; i--) {
ifact[i] = ((i + 1) * ifact[i + 1]) % mod;
}
}
ll nck(ll n, ll k) {
if (!__factorials_generated__) {
cerr << "Call gen_factorial you dope" << endl;
exit(1);
}
if (k < 0 || n < k) return 0;
ll den = (ifact[k] * ifact[n - k]) % mod;
return (den * fact[n]) % mod;
}
}
using namespace modop;
using namespace number_theory;
ll rev(ll a)
{
ll res=0;
while(a!=0)
{
res=res*10+a%10;
a/=10;
}
return res;
}
void solve()
{
ll n;
cin>>n;
ll ans=0;
for(ll i=0;i<n;i++)
{
ll a;
cin>>a;
if(a==rev(a)) ans+=a;
}
cout<<ans<<endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
ll t=1;
///cin>>t;
while(t--)
{
solve();
}
}
Compilation message
palindromes.cpp: In function 'std::vector<long long int> number_theory::factors(long long int)':
palindromes.cpp:82:57: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
82 | for (ll i = 0; primelist[i] * primelist[i] <= n && i < primelist.size(); i++) {
| ~~^~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
2396 KB |
Output is correct |
2 |
Correct |
2 ms |
2396 KB |
Output is correct |
3 |
Correct |
48 ms |
7260 KB |
Output is correct |
4 |
Correct |
73 ms |
9652 KB |
Output is correct |
5 |
Correct |
87 ms |
11964 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
2396 KB |
Output is correct |
2 |
Correct |
2 ms |
2392 KB |
Output is correct |
3 |
Correct |
23 ms |
3920 KB |
Output is correct |
4 |
Correct |
45 ms |
5200 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
2396 KB |
Output is correct |
2 |
Correct |
2 ms |
2392 KB |
Output is correct |
3 |
Correct |
23 ms |
3920 KB |
Output is correct |
4 |
Correct |
45 ms |
5200 KB |
Output is correct |
5 |
Correct |
1 ms |
2396 KB |
Output is correct |
6 |
Correct |
2 ms |
2396 KB |
Output is correct |
7 |
Correct |
40 ms |
5308 KB |
Output is correct |
8 |
Correct |
50 ms |
6200 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
2396 KB |
Output is correct |
2 |
Correct |
2 ms |
2396 KB |
Output is correct |
3 |
Correct |
48 ms |
7260 KB |
Output is correct |
4 |
Correct |
73 ms |
9652 KB |
Output is correct |
5 |
Correct |
87 ms |
11964 KB |
Output is correct |
6 |
Correct |
1 ms |
2396 KB |
Output is correct |
7 |
Correct |
2 ms |
2392 KB |
Output is correct |
8 |
Correct |
23 ms |
3920 KB |
Output is correct |
9 |
Correct |
45 ms |
5200 KB |
Output is correct |
10 |
Correct |
1 ms |
2396 KB |
Output is correct |
11 |
Correct |
2 ms |
2396 KB |
Output is correct |
12 |
Correct |
40 ms |
5308 KB |
Output is correct |
13 |
Correct |
50 ms |
6200 KB |
Output is correct |
14 |
Correct |
1 ms |
2392 KB |
Output is correct |
15 |
Correct |
3 ms |
2652 KB |
Output is correct |
16 |
Correct |
36 ms |
6344 KB |
Output is correct |
17 |
Correct |
79 ms |
11184 KB |
Output is correct |
18 |
Correct |
88 ms |
12112 KB |
Output is correct |
19 |
Correct |
86 ms |
12116 KB |
Output is correct |
20 |
Correct |
90 ms |
12092 KB |
Output is correct |