Submission #951795

# Submission time Handle Problem Language Result Execution time Memory
951795 2024-03-22T16:26:49 Z EJIC_B_KEDAX Copy and Paste 3 (JOI22_copypaste3) C++17
57 / 100
586 ms 373624 KB
#ifdef LOCAL
    #define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>

#ifndef LOCAL
    // #pragma GCC optimize("O3")
    // #pragma GCC optimize("Ofast")
    // #pragma GCC optimize("unroll-loops")
    // #pragma GCC target("avx,avx2,bmi,bmi2,popcnt,lzcnt")
#endif
using namespace std;
using ll = long long;
using ld = long double;
#define x first
#define y second
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()

mt19937_64 mt(time(0));

void solve();
void init();

int32_t main() {
#ifndef LOCAL
    cin.tie(nullptr)->sync_with_stdio(false);
#endif
    cout << fixed << setprecision(30);
    init();
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}

const int N = 2525, mod = 1000000321, p = 31;
ll dp[N][N], save[N][N], mn[N];
int to[N][N], nw[N][N], hsh[N], pdeg[N], pinv[N];
vector<pair<int, int>> upd[N];

int add(int a, int b) {
    return a + b >= mod ? a + b - mod : a + b;
}

int sub(int a, int b) {
    return a >= b ? a - b : a - b + mod;
}

int mul(int a, int b) {
    return 1ll * a * b % mod;
}

int bin_pow(int a, int x) {
    int res = 1;
    while (x) {
        if (x & 1) {
            res = mul(res, a);
        }
        a = mul(a, a);
        x >>= 1;
    }
    return res;
}

int inv(int a) {
    return bin_pow(a, mod - 2);
}

void init() {
    pdeg[0] = 1;
    pdeg[1] = p;
    pinv[0] = 1;
    pinv[1] = inv(p);
    for (int i = 2; i < N; i++) {
        pdeg[i] = mul(pdeg[i - 1], p);
        pinv[i] = mul(pinv[i - 1], pinv[1]);
    }
}

int get_hash(int l, int r) {
    return mul(sub(hsh[r + 1], hsh[l]), pinv[l]);
}

// struct segment_tree {
//     vector<ll> st;
//     int size;
//     segment_tree(int sz = N) {
//         st.resize(2 * sz, 0);
//         size = sz;
//     }
//     void add(int i, ll v) {
//         i += size;
//         st[i] += v;
//         i >>= 1;
//         while (i) {
//             st[i] = min(st[2 * i], st[2 * i + 1]);
//             i >>= 1;
//         }
//     }
//     ll get_min(int l, int r) {
//         l += size;
//         r += size;
//         ll res = INT64_MAX;
//         while (l <= r) {
//             if (l & 1) {
//                 res = min(res, st[l++]);
//             }
//             if (~r & 1) {
//                 res = min(res, st[r--]);
//             }
//             l >>= 1;
//             r >>= 1;
//         }
//         return res;
//     }
// };

// segment_tree st[N];

void solve() {
    int n;
    cin >> n;
    string s;
    cin >> s;
    int a, b, c;
    cin >> a >> b >> c;
    hsh[0] = 0;
    for (int i = 0; i < n; i++) {
        hsh[i + 1] = add(hsh[i], mul(s[i] - 'a' + 1, pdeg[i]));
        upd[i].reserve(40 * N);
    }
    for (int l = 0; l < n; l++) {
        unordered_map<int, int> mp;
        for (int i = 0; i < n - l; i++) {
            int j = i + l;
            int nw = get_hash(i, j);
            if (mp.find(nw) == mp.end()) {
                to[i][j] = -1;
            } else {
                to[i][j] = mp[nw];
            }
            if (i >= l) {
                mp[get_hash(i - l, i)] = i - l;
            }
        }
    }
    for (int i = 0; i < n; i++) {
        dp[i][i] = a;
        save[i][i] = b + c;
        mn[i] = min(mn[i], save[i][i]);
        // st[i].add(i, b + c);
        nw[i][i] = to[i][i];
        if (to[i][i] != -1) {
            upd[i - to[i][i]].emplace_back(i, i);
        }
    }
    for (int l = 1; l < n; l++) {
        assert(upd[l].size() <= 20 * N);
        for (auto [i, j] : upd[l]) {
            int nxt = to[nw[i][j]][nw[i][j] + j - i];
            nw[i][j] = nxt;
            if (nxt >= 0) {
                upd[j - nxt].emplace_back(i, j);
            }
            save[j][i] += c - 1ll * (j - i + 1) * a;
            mn[j] = min(mn[j], save[j][i]);
            // st[j].add(i, c - 1ll * (j - i + 1) * a);
        }
        for (int i = 0; i < n - l; i++) {
            int j = i + l;
            dp[i][j] = min(1ll * (j - i + 1) * a + mn[j], dp[i][j - 1] + a);
            // st[j].add(i, dp[i][j] + b + c - 1ll * (j - i + 1) * a);
            save[j][i] += dp[i][j] + b + c - 1ll * (j - i + 1) * a;
            mn[j] = min(mn[j], save[j][i]);
            nw[i][j] = to[i][j];
            if (nw[i][j] != -1) {
                upd[j - nw[i][j]].emplace_back(i, j);
            }
        }
    }
    // cout << to[3][3] << '\n';
    // for (int i = 0; i < n; i++) {
    //     for (int j = i; j < n; j++) {
    //         cout << dp[i][j] << ' ';
    //     }
    //     cout << '\n';
    // }
    cout << dp[0][n - 1] << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4700 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 1 ms 4696 KB Output is correct
4 Correct 2 ms 4700 KB Output is correct
5 Correct 1 ms 4700 KB Output is correct
6 Correct 1 ms 4952 KB Output is correct
7 Correct 1 ms 4700 KB Output is correct
8 Correct 1 ms 4700 KB Output is correct
9 Correct 1 ms 4696 KB Output is correct
10 Correct 1 ms 4700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6748 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 362 ms 198904 KB Output is correct
4 Correct 427 ms 224364 KB Output is correct
5 Correct 485 ms 252840 KB Output is correct
6 Correct 586 ms 278376 KB Output is correct
7 Runtime error 501 ms 373624 KB Execution killed with signal 6
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4700 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 1 ms 4696 KB Output is correct
4 Correct 2 ms 4700 KB Output is correct
5 Correct 1 ms 4700 KB Output is correct
6 Correct 1 ms 4952 KB Output is correct
7 Correct 1 ms 4700 KB Output is correct
8 Correct 1 ms 4700 KB Output is correct
9 Correct 1 ms 4696 KB Output is correct
10 Correct 1 ms 4700 KB Output is correct
11 Correct 1 ms 6744 KB Output is correct
12 Correct 1 ms 6744 KB Output is correct
13 Correct 1 ms 6748 KB Output is correct
14 Correct 1 ms 4700 KB Output is correct
15 Correct 1 ms 6748 KB Output is correct
16 Correct 1 ms 6748 KB Output is correct
17 Correct 1 ms 4696 KB Output is correct
18 Correct 1 ms 4444 KB Output is correct
19 Correct 1 ms 6748 KB Output is correct
20 Correct 2 ms 4700 KB Output is correct
21 Correct 1 ms 7004 KB Output is correct
22 Correct 1 ms 7004 KB Output is correct
23 Correct 1 ms 7004 KB Output is correct
24 Correct 2 ms 7004 KB Output is correct
25 Correct 1 ms 7004 KB Output is correct
26 Correct 1 ms 7004 KB Output is correct
27 Correct 1 ms 7004 KB Output is correct
28 Correct 2 ms 7004 KB Output is correct
29 Correct 1 ms 7004 KB Output is correct
30 Correct 2 ms 7004 KB Output is correct
31 Correct 2 ms 7004 KB Output is correct
32 Correct 1 ms 7004 KB Output is correct
33 Correct 1 ms 7004 KB Output is correct
34 Correct 1 ms 4608 KB Output is correct
35 Correct 1 ms 4440 KB Output is correct
36 Correct 1 ms 4700 KB Output is correct
37 Correct 1 ms 4700 KB Output is correct
38 Correct 1 ms 6748 KB Output is correct
39 Correct 1 ms 7004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4700 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 1 ms 4696 KB Output is correct
4 Correct 2 ms 4700 KB Output is correct
5 Correct 1 ms 4700 KB Output is correct
6 Correct 1 ms 4952 KB Output is correct
7 Correct 1 ms 4700 KB Output is correct
8 Correct 1 ms 4700 KB Output is correct
9 Correct 1 ms 4696 KB Output is correct
10 Correct 1 ms 4700 KB Output is correct
11 Correct 1 ms 6744 KB Output is correct
12 Correct 1 ms 6744 KB Output is correct
13 Correct 1 ms 6748 KB Output is correct
14 Correct 1 ms 4700 KB Output is correct
15 Correct 1 ms 6748 KB Output is correct
16 Correct 1 ms 6748 KB Output is correct
17 Correct 1 ms 4696 KB Output is correct
18 Correct 1 ms 4444 KB Output is correct
19 Correct 1 ms 6748 KB Output is correct
20 Correct 2 ms 4700 KB Output is correct
21 Correct 1 ms 7004 KB Output is correct
22 Correct 1 ms 7004 KB Output is correct
23 Correct 1 ms 7004 KB Output is correct
24 Correct 2 ms 7004 KB Output is correct
25 Correct 1 ms 7004 KB Output is correct
26 Correct 1 ms 7004 KB Output is correct
27 Correct 1 ms 7004 KB Output is correct
28 Correct 2 ms 7004 KB Output is correct
29 Correct 1 ms 7004 KB Output is correct
30 Correct 2 ms 7004 KB Output is correct
31 Correct 2 ms 7004 KB Output is correct
32 Correct 1 ms 7004 KB Output is correct
33 Correct 1 ms 7004 KB Output is correct
34 Correct 1 ms 4608 KB Output is correct
35 Correct 1 ms 4440 KB Output is correct
36 Correct 1 ms 4700 KB Output is correct
37 Correct 1 ms 4700 KB Output is correct
38 Correct 1 ms 6748 KB Output is correct
39 Correct 1 ms 7004 KB Output is correct
40 Correct 2 ms 11864 KB Output is correct
41 Correct 5 ms 18728 KB Output is correct
42 Correct 5 ms 18264 KB Output is correct
43 Correct 5 ms 18268 KB Output is correct
44 Correct 4 ms 18268 KB Output is correct
45 Correct 5 ms 18520 KB Output is correct
46 Correct 5 ms 18264 KB Output is correct
47 Correct 4 ms 18520 KB Output is correct
48 Correct 5 ms 18268 KB Output is correct
49 Correct 5 ms 18268 KB Output is correct
50 Correct 5 ms 18264 KB Output is correct
51 Correct 5 ms 18268 KB Output is correct
52 Correct 5 ms 18420 KB Output is correct
53 Correct 5 ms 18268 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4700 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 1 ms 4696 KB Output is correct
4 Correct 2 ms 4700 KB Output is correct
5 Correct 1 ms 4700 KB Output is correct
6 Correct 1 ms 4952 KB Output is correct
7 Correct 1 ms 4700 KB Output is correct
8 Correct 1 ms 4700 KB Output is correct
9 Correct 1 ms 4696 KB Output is correct
10 Correct 1 ms 4700 KB Output is correct
11 Correct 1 ms 6744 KB Output is correct
12 Correct 1 ms 6744 KB Output is correct
13 Correct 1 ms 6748 KB Output is correct
14 Correct 1 ms 4700 KB Output is correct
15 Correct 1 ms 6748 KB Output is correct
16 Correct 1 ms 6748 KB Output is correct
17 Correct 1 ms 4696 KB Output is correct
18 Correct 1 ms 4444 KB Output is correct
19 Correct 1 ms 6748 KB Output is correct
20 Correct 2 ms 4700 KB Output is correct
21 Correct 1 ms 7004 KB Output is correct
22 Correct 1 ms 7004 KB Output is correct
23 Correct 1 ms 7004 KB Output is correct
24 Correct 2 ms 7004 KB Output is correct
25 Correct 1 ms 7004 KB Output is correct
26 Correct 1 ms 7004 KB Output is correct
27 Correct 1 ms 7004 KB Output is correct
28 Correct 2 ms 7004 KB Output is correct
29 Correct 1 ms 7004 KB Output is correct
30 Correct 2 ms 7004 KB Output is correct
31 Correct 2 ms 7004 KB Output is correct
32 Correct 1 ms 7004 KB Output is correct
33 Correct 1 ms 7004 KB Output is correct
34 Correct 1 ms 4608 KB Output is correct
35 Correct 1 ms 4440 KB Output is correct
36 Correct 1 ms 4700 KB Output is correct
37 Correct 1 ms 4700 KB Output is correct
38 Correct 1 ms 6748 KB Output is correct
39 Correct 1 ms 7004 KB Output is correct
40 Correct 2 ms 11864 KB Output is correct
41 Correct 5 ms 18728 KB Output is correct
42 Correct 5 ms 18264 KB Output is correct
43 Correct 5 ms 18268 KB Output is correct
44 Correct 4 ms 18268 KB Output is correct
45 Correct 5 ms 18520 KB Output is correct
46 Correct 5 ms 18264 KB Output is correct
47 Correct 4 ms 18520 KB Output is correct
48 Correct 5 ms 18268 KB Output is correct
49 Correct 5 ms 18268 KB Output is correct
50 Correct 5 ms 18264 KB Output is correct
51 Correct 5 ms 18268 KB Output is correct
52 Correct 5 ms 18420 KB Output is correct
53 Correct 5 ms 18268 KB Output is correct
54 Correct 16 ms 34164 KB Output is correct
55 Correct 78 ms 87784 KB Output is correct
56 Correct 63 ms 69712 KB Output is correct
57 Correct 57 ms 68072 KB Output is correct
58 Correct 57 ms 67924 KB Output is correct
59 Correct 53 ms 67920 KB Output is correct
60 Correct 52 ms 67876 KB Output is correct
61 Correct 47 ms 69104 KB Output is correct
62 Correct 71 ms 83540 KB Output is correct
63 Correct 51 ms 68440 KB Output is correct
64 Correct 57 ms 69456 KB Output is correct
65 Correct 63 ms 75860 KB Output is correct
66 Correct 60 ms 75856 KB Output is correct
67 Correct 52 ms 68104 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4700 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 1 ms 4696 KB Output is correct
4 Correct 2 ms 4700 KB Output is correct
5 Correct 1 ms 4700 KB Output is correct
6 Correct 1 ms 4952 KB Output is correct
7 Correct 1 ms 4700 KB Output is correct
8 Correct 1 ms 4700 KB Output is correct
9 Correct 1 ms 4696 KB Output is correct
10 Correct 1 ms 4700 KB Output is correct
11 Correct 2 ms 6748 KB Output is correct
12 Correct 1 ms 4700 KB Output is correct
13 Correct 362 ms 198904 KB Output is correct
14 Correct 427 ms 224364 KB Output is correct
15 Correct 485 ms 252840 KB Output is correct
16 Correct 586 ms 278376 KB Output is correct
17 Runtime error 501 ms 373624 KB Execution killed with signal 6
18 Halted 0 ms 0 KB -