Submission #949402

# Submission time Handle Problem Language Result Execution time Memory
949402 2024-03-19T08:01:33 Z MilosMilutinovic IOI Fever (JOI21_fever) C++14
69 / 100
3327 ms 103864 KB
#include<bits/stdc++.h>
 
#define pb push_back
#define fi first
#define se second
#define mp make_pair
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef long double ld;
 
template <typename T> bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template <typename T> bool chkmax(T &x,T y){return x<y?x=y,1:0;}
 
ll readint(){
    ll x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

#define info pair<pair<ll,int>,pair<ll,int>>
 
const int dx[]={1,0,-1,0};
const int dy[]={0,1,0,-1};
int n,tot;
int d1[100005],d2[100005],d3[100005],d4[100005],root[4][100005],lch[10000005],rch[10000005],pos[4][100005];
ll x[100005],y[100005],dir[100005];
bool vis[100005];
pair<ll,int> mn[10000005][4],mx[10000005][4];

void change(int&id,int t,int l,int r,int ql,int qr,info v){
	if(!id) id=++tot,mn[id][t]=mp((ll)1e18,0),mx[id][t]=mp((ll)-1e18,0);
	if(ql<=l&&r<=qr){
		mn[id][t]=min(mn[id][t],v.fi);
		mx[id][t]=max(mx[id][t],v.se);
		return;
	}
	int mid=(l+r)/2;
	if(qr<=mid) change(lch[id],t,l,mid,ql,qr,v);
	else if(ql>mid) change(rch[id],t,mid+1,r,ql,qr,v);
	else change(lch[id],t,l,mid,ql,qr,v),change(rch[id],t,mid+1,r,ql,qr,v);
}

pair<ll,int> query(int id,int t,int l,int r,int i,int v){
	if(!id) return mp((ll)1e18,0);
	if(l==r) return min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se));
	int mid=(l+r)/2;
	pair<ll,int> bst;
	if(i<=mid) bst=query(lch[id],t,l,mid,i,v);
	else bst=query(rch[id],t,mid+1,r,i,v);
	bst=min(bst,min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se)));
	return bst;
}
 
int main(){
	n=readint();
	for(int i=1;i<=n;i++) x[i]=readint(),y[i]=readint(),x[i]*=2,y[i]*=2;
	vector<int> xs1,xs2,xs3,xs4;
	for(int i=1;i<=n;i++){
		xs1.pb(x[i]+y[i]);
		xs2.pb(x[i]-y[i]);
		xs3.pb(x[i]);
		xs4.pb(y[i]);
	}
	sort(xs1.begin(),xs1.end());
	xs1.erase(unique(xs1.begin(),xs1.end()),xs1.end());
	sort(xs2.begin(),xs2.end());
	xs2.erase(unique(xs2.begin(),xs2.end()),xs2.end());
	sort(xs3.begin(),xs3.end());
	xs3.erase(unique(xs3.begin(),xs3.end()),xs3.end());
	sort(xs4.begin(),xs4.end());
	xs4.erase(unique(xs4.begin(),xs4.end()),xs4.end());
	int sz1=(int)xs1.size(),sz2=(int)xs2.size(),sz3=(int)xs3.size(),sz4=(int)xs4.size();
	vector<set<pii>> st1(sz1),st2(sz2),st3(sz3),st4(sz4);
	vector<vector<int>> ids1(sz1),ids2(sz2),ids3(sz3),ids4(sz4);
	for(int i=1;i<=n;i++){
		d1[i]=(int)(lower_bound(xs1.begin(),xs1.end(),x[i]+y[i])-xs1.begin());
		d2[i]=(int)(lower_bound(xs2.begin(),xs2.end(),x[i]-y[i])-xs2.begin());
		d3[i]=(int)(lower_bound(xs3.begin(),xs3.end(),x[i])-xs3.begin());
		d4[i]=(int)(lower_bound(xs4.begin(),xs4.end(),y[i])-xs4.begin());
		st1[d1[i]].emplace(x[i],i);
		st2[d2[i]].emplace(x[i],i);
		st3[d3[i]].emplace(y[i],i);
		st4[d4[i]].emplace(x[i],i);
		ids1[d1[i]].pb(i);
		ids2[d2[i]].pb(i);
		ids3[d3[i]].pb(i);
		ids4[d4[i]].pb(i);
	}
	for(int i=0;i<sz1;i++){
		sort(ids1[i].begin(),ids1[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids1[i].size();j++){
			pos[0][ids1[i][j]]=j;
		}
	}
	for(int i=0;i<sz2;i++){
		sort(ids2[i].begin(),ids2[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids2[i].size();j++){
			pos[1][ids2[i][j]]=j;
		}
	}
	for(int i=0;i<sz3;i++){
		sort(ids3[i].begin(),ids3[i].end(),[&](int i,int j){return y[i]<y[j];});
		for(int j=0;j<(int)ids3[i].size();j++){
			pos[2][ids3[i][j]]=j;
		}
	}
	for(int i=0;i<sz4;i++){
		sort(ids4[i].begin(),ids4[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids4[i].size();j++){
			pos[3][ids4[i][j]]=j;
		}
	}
	int ans=0;
	for(int d=0;d<4;d++){
		for(int i=1;i<=n;i++) vis[i]=false;
		dir[1]=d;
		priority_queue<pair<ll,pii>> pq;
		pq.push(mp(0,mp(1,d)));
		for(int i=1;i<=n;i++){
			st1[d1[i]].emplace(x[i],i);
			st2[d2[i]].emplace(x[i],i);
			st3[d3[i]].emplace(y[i],i);
			st4[d4[i]].emplace(x[i],i);
		}
		while(tot){
			for(int j=0;j<4;j++){
				mn[tot][j]=mp((ll)1e18,0);
				mx[tot][j]=mp((ll)-1e18,0);
			}
			lch[tot]=0;
			rch[tot]=0;
			tot--;
		}
		for(int j=0;j<4;j++){
			for(int i=0;i<sz1;i++) root[j][i]=0;
			for(int i=0;i<sz2;i++) root[j][i]=0;
		}
		auto upd=[&](int idx){
			if(vis[idx]) return;
			pair<ll,int> bst=min(query(root[0][d1[idx]],0,0,ids1[d1[idx]].size()-1,pos[0][idx],x[idx]),query(root[1][d2[idx]],1,0,ids2[d2[idx]].size()-1,pos[1][idx],x[idx]));
			bst=min({bst,query(root[2][d3[idx]],2,0,ids3[d3[idx]].size()-1,pos[2][idx],y[idx]/2),query(root[3][d4[idx]],3,0,ids4[d4[idx]].size()-1,pos[3][idx],x[idx]/2)});
			if(bst.fi<(ll)1e17){
				pq.push(mp(-bst.fi,mp(idx,bst.se)));
			}
			return;
		};
		while(!pq.empty()){
			ll t=-pq.top().fi;
			int i=pq.top().se.fi;
			int dd=pq.top().se.se;
			pq.pop();
			if(vis[i]) continue;
			dir[i]=dd;
			vis[i]=true;
			auto it1=st1[d1[i]].lower_bound(mp(x[i],i));
			if(it1!=st1[d1[i]].begin()) upd(prev(it1)->se);
			if(it1!=prev(st1[d1[i]].end())) upd(next(it1)->se);
			st1[d1[i]].erase(it1);
			auto it2=st2[d2[i]].lower_bound(mp(x[i],i));
			if(it2!=st2[d2[i]].begin()) upd(prev(it2)->se);
			if(it2!=prev(st2[d2[i]].end())) upd(next(it2)->se);
			st2[d2[i]].erase(it2);
			auto it3=st3[d3[i]].lower_bound(mp(y[i],i));
			if(it3!=st3[d3[i]].begin()) upd(prev(it3)->se);
			if(it3!=prev(st3[d3[i]].end())) upd(next(it3)->se);
			st3[d3[i]].erase(it3);
			auto it4=st4[d4[i]].lower_bound(mp(x[i],i));
			if(it4!=st4[d4[i]].begin()) upd(prev(it4)->se);
			if(it4!=prev(st4[d4[i]].end())) upd(next(it4)->se);
			st4[d4[i]].erase(it4);
			if(dir[i]==0){
				// up
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1; 
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids3[d3[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if((y[ids3[d3[i]][mid]]-y[i])/2>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p!=ids3[d3[i]].size()){
						change(root[2][d3[i]],2,0,ids3[d3[i]].size()-1,p,ids3[d3[i]].size()-1,mp(mp((ll)1e18,0),mp(y[i]/2,1)));
						auto it=st3[d3[i]].lower_bound(mp(y[ids3[d3[i]][p]],ids3[d3[i]][p]));
						if(it!=st3[d3[i]].end()) upd(it->se);
					}
				}
			}
			if(dir[i]==1){
				// down
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],3)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1; 
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids3[d3[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if((y[i]-y[ids3[d3[i]][mid]])/2>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[2][d3[i]],2,0,ids3[d3[i]].size()-1,0,p,mp(mp(y[i]/2,0),mp(-(ll)1e18,1)));
						auto it=st3[d3[i]].lower_bound(mp(y[ids3[d3[i]][p]],ids3[d3[i]][p]+1));
						if(it!=st3[d3[i]].begin()) upd(prev(it)->se);
					}
				}
			}
			if(dir[i]==2){
				// right
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],1)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids4[d4[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if((x[ids4[d4[i]][mid]]-x[i])/2>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<ids4[d4[i]].size()){
						change(root[3][d4[i]],3,0,ids4[d4[i]].size()-1,p,ids4[d4[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i]/2,3)));
						auto it=st4[d4[i]].lower_bound(mp(x[ids4[d4[i]][p]],ids4[d4[i]][p]));
						if(it!=st4[d4[i]].end()) upd(it->se);
					} 
				}
			}
			if(dir[i]==3){
				// left
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],1),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],0),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids4[d4[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if((x[i]-x[ids4[d4[i]][mid]])/2>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[3][d4[i]],3,0,ids4[d4[i]].size()-1,0,p,mp(mp(x[i]/2,2),mp((ll)-1e18,3)));
						auto it=st4[d4[i]].lower_bound(mp(x[ids4[d4[i]][p]],ids4[d4[i]][p]+1));
						if(it!=st4[d4[i]].begin()) upd(prev(it)->se);
					} 
				}
			}
		}
		int cnt=0;
		for(int i=1;i<=n;i++) cnt+=vis[i];
		ans=max(ans,cnt);
	}
	printf("%d\n",ans);
}

Compilation message

fever.cpp: In function 'int main()':
fever.cpp:212:10: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  212 |      if(p!=ids3[d3[i]].size()){
      |         ~^~~~~~~~~~~~~~~~~~~~
fever.cpp:296:10: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  296 |      if(p<ids4[d4[i]].size()){
      |         ~^~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12636 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12636 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12764 KB Output is correct
13 Correct 2 ms 12636 KB Output is correct
14 Correct 2 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12632 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10840 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10584 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 1 ms 10840 KB Output is correct
32 Correct 2 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12636 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12636 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12764 KB Output is correct
13 Correct 2 ms 12636 KB Output is correct
14 Correct 2 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12632 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10840 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10584 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 1 ms 10840 KB Output is correct
32 Correct 2 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10840 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 1 ms 10588 KB Output is correct
40 Correct 2 ms 10720 KB Output is correct
41 Correct 1 ms 10588 KB Output is correct
42 Correct 2 ms 10584 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10588 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 12636 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12632 KB Output is correct
6 Correct 2 ms 10584 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12636 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12636 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12764 KB Output is correct
13 Correct 2 ms 12636 KB Output is correct
14 Correct 2 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12632 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10840 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10584 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 1 ms 10840 KB Output is correct
32 Correct 2 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10840 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 1 ms 10588 KB Output is correct
40 Correct 2 ms 10720 KB Output is correct
41 Correct 1 ms 10588 KB Output is correct
42 Correct 2 ms 10584 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 1 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12632 KB Output is correct
51 Correct 2 ms 10584 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10588 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10840 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10584 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10584 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12636 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12636 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12764 KB Output is correct
13 Correct 2 ms 12636 KB Output is correct
14 Correct 2 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12632 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10840 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10584 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 1 ms 10840 KB Output is correct
32 Correct 2 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10840 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 1 ms 10588 KB Output is correct
40 Correct 2 ms 10720 KB Output is correct
41 Correct 1 ms 10588 KB Output is correct
42 Correct 2 ms 10584 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 1 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12632 KB Output is correct
51 Correct 2 ms 10584 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10588 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10840 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10584 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10584 KB Output is correct
66 Correct 6 ms 14428 KB Output is correct
67 Correct 6 ms 14428 KB Output is correct
68 Correct 6 ms 14684 KB Output is correct
69 Correct 38 ms 13660 KB Output is correct
70 Correct 14 ms 13656 KB Output is correct
71 Correct 8 ms 11612 KB Output is correct
72 Correct 7 ms 12124 KB Output is correct
73 Correct 6 ms 14684 KB Output is correct
74 Correct 8 ms 12380 KB Output is correct
75 Correct 11 ms 12412 KB Output is correct
76 Correct 8 ms 12380 KB Output is correct
77 Correct 8 ms 12376 KB Output is correct
78 Correct 7 ms 12376 KB Output is correct
79 Correct 7 ms 12376 KB Output is correct
80 Correct 6 ms 12632 KB Output is correct
81 Correct 7 ms 14684 KB Output is correct
82 Correct 9 ms 12384 KB Output is correct
83 Correct 9 ms 14428 KB Output is correct
84 Correct 6 ms 11864 KB Output is correct
85 Correct 6 ms 11348 KB Output is correct
86 Correct 7 ms 11608 KB Output is correct
87 Correct 6 ms 11612 KB Output is correct
88 Correct 7 ms 12260 KB Output is correct
89 Correct 7 ms 14428 KB Output is correct
90 Correct 7 ms 14628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12636 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12636 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12764 KB Output is correct
13 Correct 2 ms 12636 KB Output is correct
14 Correct 2 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12632 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10840 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10584 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 1 ms 10840 KB Output is correct
32 Correct 2 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10840 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 1 ms 10588 KB Output is correct
40 Correct 2 ms 10720 KB Output is correct
41 Correct 1 ms 10588 KB Output is correct
42 Correct 2 ms 10584 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 1 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12632 KB Output is correct
51 Correct 2 ms 10584 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10588 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10840 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10584 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10584 KB Output is correct
66 Correct 319 ms 56504 KB Output is correct
67 Correct 457 ms 68164 KB Output is correct
68 Correct 410 ms 75664 KB Output is correct
69 Correct 746 ms 63676 KB Output is correct
70 Correct 956 ms 63800 KB Output is correct
71 Correct 391 ms 73404 KB Output is correct
72 Correct 411 ms 73144 KB Output is correct
73 Correct 616 ms 63928 KB Output is correct
74 Correct 392 ms 73408 KB Output is correct
75 Correct 441 ms 73180 KB Output is correct
76 Correct 598 ms 65968 KB Output is correct
77 Correct 407 ms 73644 KB Output is correct
78 Correct 557 ms 103864 KB Output is correct
79 Correct 546 ms 103352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12636 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12636 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12764 KB Output is correct
13 Correct 2 ms 12636 KB Output is correct
14 Correct 2 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12632 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10840 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10584 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 1 ms 10840 KB Output is correct
32 Correct 2 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10840 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 1 ms 10588 KB Output is correct
40 Correct 2 ms 10720 KB Output is correct
41 Correct 1 ms 10588 KB Output is correct
42 Correct 2 ms 10584 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 1 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12632 KB Output is correct
51 Correct 2 ms 10584 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10588 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10840 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10584 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10584 KB Output is correct
66 Correct 6 ms 14428 KB Output is correct
67 Correct 6 ms 14428 KB Output is correct
68 Correct 6 ms 14684 KB Output is correct
69 Correct 38 ms 13660 KB Output is correct
70 Correct 14 ms 13656 KB Output is correct
71 Correct 8 ms 11612 KB Output is correct
72 Correct 7 ms 12124 KB Output is correct
73 Correct 6 ms 14684 KB Output is correct
74 Correct 8 ms 12380 KB Output is correct
75 Correct 11 ms 12412 KB Output is correct
76 Correct 8 ms 12380 KB Output is correct
77 Correct 8 ms 12376 KB Output is correct
78 Correct 7 ms 12376 KB Output is correct
79 Correct 7 ms 12376 KB Output is correct
80 Correct 6 ms 12632 KB Output is correct
81 Correct 7 ms 14684 KB Output is correct
82 Correct 9 ms 12384 KB Output is correct
83 Correct 9 ms 14428 KB Output is correct
84 Correct 6 ms 11864 KB Output is correct
85 Correct 6 ms 11348 KB Output is correct
86 Correct 7 ms 11608 KB Output is correct
87 Correct 6 ms 11612 KB Output is correct
88 Correct 7 ms 12260 KB Output is correct
89 Correct 7 ms 14428 KB Output is correct
90 Correct 7 ms 14628 KB Output is correct
91 Correct 319 ms 56504 KB Output is correct
92 Correct 457 ms 68164 KB Output is correct
93 Correct 410 ms 75664 KB Output is correct
94 Correct 746 ms 63676 KB Output is correct
95 Correct 956 ms 63800 KB Output is correct
96 Correct 391 ms 73404 KB Output is correct
97 Correct 411 ms 73144 KB Output is correct
98 Correct 616 ms 63928 KB Output is correct
99 Correct 392 ms 73408 KB Output is correct
100 Correct 441 ms 73180 KB Output is correct
101 Correct 598 ms 65968 KB Output is correct
102 Correct 407 ms 73644 KB Output is correct
103 Correct 557 ms 103864 KB Output is correct
104 Correct 546 ms 103352 KB Output is correct
105 Correct 1521 ms 39800 KB Output is correct
106 Correct 2078 ms 44472 KB Output is correct
107 Correct 3327 ms 52036 KB Output is correct
108 Correct 2198 ms 48564 KB Output is correct
109 Correct 596 ms 43380 KB Output is correct
110 Correct 480 ms 61852 KB Output is correct
111 Correct 404 ms 77536 KB Output is correct
112 Correct 451 ms 71948 KB Output is correct
113 Correct 459 ms 71588 KB Output is correct
114 Incorrect 1818 ms 73712 KB Output isn't correct
115 Halted 0 ms 0 KB -