Submission #949389

# Submission time Handle Problem Language Result Execution time Memory
949389 2024-03-19T07:45:09 Z MilosMilutinovic IOI Fever (JOI21_fever) C++14
57 / 100
1050 ms 103608 KB
#include<bits/stdc++.h>
 
#define pb push_back
#define fi first
#define se second
#define mp make_pair
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef long double ld;
 
template <typename T> bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template <typename T> bool chkmax(T &x,T y){return x<y?x=y,1:0;}
 
ll readint(){
    ll x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

#define info pair<pair<ll,int>,pair<ll,int>>
 
const int dx[]={1,0,-1,0};
const int dy[]={0,1,0,-1};
int n,tot;
int d1[100005],d2[100005],d3[100005],d4[100005],root[4][100005],lch[10000005],rch[10000005],pos[4][100005];
ll x[100005],y[100005],dir[100005];
bool vis[100005];
pair<ll,int> mn[10000005][4],mx[10000005][4];

void change(int&id,int t,int l,int r,int ql,int qr,info v){
	if(!id) id=++tot,mn[id][t]=mp((ll)1e18,0),mx[id][t]=mp((ll)-1e18,0);
	if(ql<=l&&r<=qr){
		mn[id][t]=min(mn[id][t],v.fi);
		mx[id][t]=max(mx[id][t],v.se);
		return;
	}
	int mid=(l+r)/2;
	if(qr<=mid) change(lch[id],t,l,mid,ql,qr,v);
	else if(ql>mid) change(rch[id],t,mid+1,r,ql,qr,v);
	else change(lch[id],t,l,mid,ql,qr,v),change(rch[id],t,mid+1,r,ql,qr,v);
}

pair<ll,int> query(int id,int t,int l,int r,int i,int v){
	if(!id) return mp((ll)1e18,0);
	if(l==r) return min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se));
	int mid=(l+r)/2;
	pair<ll,int> bst;
	if(i<=mid) bst=query(lch[id],t,l,mid,i,v);
	else bst=query(rch[id],t,mid+1,r,i,v);
	bst=min(bst,min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se)));
	return bst;
}
 
int main(){
	n=readint();
	for(int i=1;i<=n;i++) x[i]=readint(),y[i]=readint(),x[i]*=2,y[i]*=2;
	vector<int> xs1,xs2,xs3,xs4;
	for(int i=1;i<=n;i++){
		xs1.pb(x[i]+y[i]);
		xs2.pb(x[i]-y[i]);
		xs3.pb(x[i]);
		xs4.pb(y[i]);
	}
	sort(xs1.begin(),xs1.end());
	xs1.erase(unique(xs1.begin(),xs1.end()),xs1.end());
	sort(xs2.begin(),xs2.end());
	xs2.erase(unique(xs2.begin(),xs2.end()),xs2.end());
	sort(xs3.begin(),xs3.end());
	xs3.erase(unique(xs3.begin(),xs3.end()),xs3.end());
	sort(xs4.begin(),xs4.end());
	xs4.erase(unique(xs4.begin(),xs4.end()),xs4.end());
	int sz1=(int)xs1.size(),sz2=(int)xs2.size(),sz3=(int)xs3.size(),sz4=(int)xs4.size();
	vector<set<pii>> st1(sz1),st2(sz2),st3(sz3),st4(sz4);
	vector<vector<int>> ids1(sz1),ids2(sz2),ids3(sz3),ids4(sz4);
	for(int i=1;i<=n;i++){
		d1[i]=(int)(lower_bound(xs1.begin(),xs1.end(),x[i]+y[i])-xs1.begin());
		d2[i]=(int)(lower_bound(xs2.begin(),xs2.end(),x[i]-y[i])-xs2.begin());
		d3[i]=(int)(lower_bound(xs3.begin(),xs3.end(),x[i])-xs3.begin());
		d4[i]=(int)(lower_bound(xs4.begin(),xs4.end(),y[i])-xs4.begin());
		st1[d1[i]].emplace(x[i],i);
		st2[d2[i]].emplace(x[i],i);
		st3[d3[i]].emplace(x[i],i);
		st4[d4[i]].emplace(y[i],i);
		ids1[d1[i]].pb(i);
		ids2[d2[i]].pb(i);
		ids3[d3[i]].pb(i);
		ids4[d4[i]].pb(i);
	}
	for(int i=0;i<sz1;i++){
		sort(ids1[i].begin(),ids1[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids1[i].size();j++){
			pos[0][ids1[i][j]]=j;
		}
	}
	for(int i=0;i<sz2;i++){
		sort(ids2[i].begin(),ids2[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids2[i].size();j++){
			pos[1][ids2[i][j]]=j;
		}
	}
	for(int i=0;i<sz3;i++){
		sort(ids3[i].begin(),ids3[i].end(),[&](int i,int j){return y[i]<y[j];});
		for(int j=0;j<(int)ids3[i].size();j++){
			pos[2][ids3[i][j]]=j;
		}
	}
	for(int i=0;i<sz4;i++){
		sort(ids4[i].begin(),ids4[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids4[i].size();j++){
			pos[3][ids4[i][j]]=j;
		}
	}
	int ans=0;
	for(int d=0;d<4;d++){
		for(int i=1;i<=n;i++) vis[i]=false;
		dir[1]=d;
		priority_queue<pair<ll,pii>> pq;
		pq.push(mp(0,mp(1,d)));
		for(int i=1;i<=n;i++){
			st1[d1[i]].emplace(x[i],i);
			st2[d2[i]].emplace(x[i],i);
			st3[d3[i]].emplace(x[i],i);
			st4[d4[i]].emplace(y[i],i);
		}
		while(tot){
			for(int j=0;j<4;j++){
				mn[tot][j]=mp((ll)1e18,0);
				mx[tot][j]=mp((ll)-1e18,0);
			}
			lch[tot]=0;
			rch[tot]=0;
			tot--;
		}
		for(int j=0;j<4;j++){
			for(int i=0;i<sz1;i++) root[j][i]=0;
			for(int i=0;i<sz2;i++) root[j][i]=0;
		}
		auto upd=[&](int idx){
			if(vis[idx]) return;
			pair<ll,int> bst=min(query(root[0][d1[idx]],0,0,ids1[d1[idx]].size()-1,pos[0][idx],x[idx]),query(root[1][d2[idx]],1,0,ids2[d2[idx]].size()-1,pos[1][idx],x[idx]));
			bst=min({bst,query(root[2][d3[idx]],2,0,ids3[d3[idx]].size()-1,pos[2][idx],y[idx]/2),query(root[3][d4[idx]],3,0,ids4[d4[idx]].size()-1,pos[3][idx],x[idx]/2)});
			if(bst.fi<(ll)1e17){
				pq.push(mp(-bst.fi,mp(idx,bst.se)));
			}
			return;
		};
		while(!pq.empty()){
			ll t=-pq.top().fi;
			int i=pq.top().se.fi;
			int dd=pq.top().se.se;
			pq.pop();
			if(vis[i]) continue;
			dir[i]=dd;
			vis[i]=true;
			auto it1=st1[d1[i]].lower_bound(mp(x[i],i));
			if(it1!=st1[d1[i]].begin()) upd(prev(it1)->se);
			if(it1!=prev(st1[d1[i]].end())) upd(next(it1)->se);
			st1[d1[i]].erase(it1);
			auto it2=st2[d2[i]].lower_bound(mp(x[i],i));
			if(it2!=st2[d2[i]].begin()) upd(prev(it2)->se);
			if(it2!=prev(st2[d2[i]].end())) upd(next(it2)->se);
			st2[d2[i]].erase(it2);
			auto it3=st3[d3[i]].lower_bound(mp(x[i],i));
			if(it3!=st3[d3[i]].begin()) upd(prev(it3)->se);
			if(it3!=prev(st3[d3[i]].end())) upd(next(it3)->se);
			st3[d3[i]].erase(it3);
			auto it4=st4[d4[i]].lower_bound(mp(y[i],i));
			if(it4!=st4[d4[i]].begin()) upd(prev(it4)->se);
			if(it4!=prev(st4[d4[i]].end())) upd(next(it4)->se);
			st4[d4[i]].erase(it4);
			if(dir[i]==0){
				// up
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1; 
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids3[d3[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if((y[ids3[d3[i]][mid]]-y[i])/2>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p!=ids3[d3[i]].size()){
						change(root[2][d3[i]],2,0,ids3[d3[i]].size()-1,p,ids3[d3[i]].size()-1,mp(mp((ll)1e18,0),mp(y[i]/2,1)));
						auto it=st3[d3[i]].lower_bound(mp(y[ids3[d3[i]][p]],ids3[d3[i]][p]));
						if(it!=st3[d3[i]].end()) upd(it->se);
					}
				}
			}
			if(dir[i]==1){
				// down
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],3)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1; 
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids3[d3[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if((y[i]-y[ids3[d3[i]][mid]])/2>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[2][d3[i]],2,0,ids3[d3[i]].size()-1,0,p,mp(mp(y[i]/2,1),mp(-(ll)1e18,1)));
						auto it=st3[d3[i]].lower_bound(mp(y[ids3[d3[i]][p]],ids3[d3[i]][p]+1));
						if(it!=st3[d3[i]].begin()) upd(prev(it)->se);
					}
				}
			}
			if(dir[i]==2){
				// right
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],1)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids4[d4[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if((x[ids4[d4[i]][mid]]-x[i])/2>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<ids4[d4[i]].size()){
						change(root[3][d4[i]],3,0,ids4[d4[i]].size()-1,p,ids4[d4[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i]/2,3)));
						auto it=st4[d4[i]].lower_bound(mp(x[ids4[d4[i]][p]],ids4[d4[i]][p]));
						if(it!=st4[d4[i]].end()) upd(it->se);
					} 
				}
			}
			if(dir[i]==3){
				// left
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],1),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],0),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids4[d4[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if((x[i]-x[ids4[d4[i]][mid]])/2>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[3][d4[i]],3,0,ids4[d4[i]].size()-1,0,p,mp(mp(x[i]/2,2),mp((ll)-1e18,3)));
						auto it=st4[d4[i]].lower_bound(mp(x[ids4[d4[i]][p]],ids4[d4[i]][p]+1));
						if(it!=st4[d4[i]].begin()) upd(prev(it)->se);
					} 
				}
			}
		}
		int cnt=0;
		for(int i=1;i<=n;i++) cnt+=vis[i];
		ans=max(ans,cnt);
	}
	printf("%d\n",ans);
}

Compilation message

fever.cpp: In function 'int main()':
fever.cpp:212:10: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  212 |      if(p!=ids3[d3[i]].size()){
      |         ~^~~~~~~~~~~~~~~~~~~~
fever.cpp:296:10: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  296 |      if(p<ids4[d4[i]].size()){
      |         ~^~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12732 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 3 ms 12632 KB Output is correct
10 Correct 2 ms 12632 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12636 KB Output is correct
13 Correct 2 ms 12732 KB Output is correct
14 Correct 2 ms 12888 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12632 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10588 KB Output is correct
25 Correct 2 ms 10664 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 2 ms 10584 KB Output is correct
28 Correct 2 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 2 ms 10676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12732 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 3 ms 12632 KB Output is correct
10 Correct 2 ms 12632 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12636 KB Output is correct
13 Correct 2 ms 12732 KB Output is correct
14 Correct 2 ms 12888 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12632 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10588 KB Output is correct
25 Correct 2 ms 10664 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 2 ms 10584 KB Output is correct
28 Correct 2 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 2 ms 10676 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 2 ms 10588 KB Output is correct
35 Correct 2 ms 12632 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10588 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 2 ms 10588 KB Output is correct
40 Correct 2 ms 10656 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 2 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10776 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 12636 KB Output is correct
4 Correct 1 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 10588 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12732 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 3 ms 12632 KB Output is correct
10 Correct 2 ms 12632 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12636 KB Output is correct
13 Correct 2 ms 12732 KB Output is correct
14 Correct 2 ms 12888 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12632 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10588 KB Output is correct
25 Correct 2 ms 10664 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 2 ms 10584 KB Output is correct
28 Correct 2 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 2 ms 10676 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 2 ms 10588 KB Output is correct
35 Correct 2 ms 12632 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10588 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 2 ms 10588 KB Output is correct
40 Correct 2 ms 10656 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 2 ms 10588 KB Output is correct
46 Correct 2 ms 10776 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 1 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 2 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 1 ms 10588 KB Output is correct
54 Correct 3 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12636 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10584 KB Output is correct
60 Correct 1 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 1 ms 10588 KB Output is correct
65 Correct 2 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12732 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 3 ms 12632 KB Output is correct
10 Correct 2 ms 12632 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12636 KB Output is correct
13 Correct 2 ms 12732 KB Output is correct
14 Correct 2 ms 12888 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12632 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10588 KB Output is correct
25 Correct 2 ms 10664 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 2 ms 10584 KB Output is correct
28 Correct 2 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 2 ms 10676 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 2 ms 10588 KB Output is correct
35 Correct 2 ms 12632 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10588 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 2 ms 10588 KB Output is correct
40 Correct 2 ms 10656 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 2 ms 10588 KB Output is correct
46 Correct 2 ms 10776 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 1 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 2 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 1 ms 10588 KB Output is correct
54 Correct 3 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12636 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10584 KB Output is correct
60 Correct 1 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 1 ms 10588 KB Output is correct
65 Correct 2 ms 10588 KB Output is correct
66 Correct 7 ms 14424 KB Output is correct
67 Correct 6 ms 14440 KB Output is correct
68 Correct 7 ms 14684 KB Output is correct
69 Correct 39 ms 13868 KB Output is correct
70 Incorrect 12 ms 13660 KB Output isn't correct
71 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12732 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 3 ms 12632 KB Output is correct
10 Correct 2 ms 12632 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12636 KB Output is correct
13 Correct 2 ms 12732 KB Output is correct
14 Correct 2 ms 12888 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12632 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10588 KB Output is correct
25 Correct 2 ms 10664 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 2 ms 10584 KB Output is correct
28 Correct 2 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 2 ms 10676 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 2 ms 10588 KB Output is correct
35 Correct 2 ms 12632 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10588 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 2 ms 10588 KB Output is correct
40 Correct 2 ms 10656 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 2 ms 10588 KB Output is correct
46 Correct 2 ms 10776 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 1 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 2 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 1 ms 10588 KB Output is correct
54 Correct 3 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12636 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10584 KB Output is correct
60 Correct 1 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 1 ms 10588 KB Output is correct
65 Correct 2 ms 10588 KB Output is correct
66 Correct 389 ms 56496 KB Output is correct
67 Correct 470 ms 68140 KB Output is correct
68 Correct 454 ms 75636 KB Output is correct
69 Correct 709 ms 63612 KB Output is correct
70 Correct 1050 ms 63760 KB Output is correct
71 Correct 463 ms 73580 KB Output is correct
72 Correct 422 ms 73160 KB Output is correct
73 Correct 648 ms 63812 KB Output is correct
74 Correct 400 ms 73496 KB Output is correct
75 Correct 450 ms 73148 KB Output is correct
76 Correct 617 ms 65940 KB Output is correct
77 Correct 422 ms 73472 KB Output is correct
78 Correct 588 ms 103608 KB Output is correct
79 Correct 545 ms 103352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12636 KB Output is correct
2 Correct 2 ms 12732 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 3 ms 12632 KB Output is correct
10 Correct 2 ms 12632 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 12636 KB Output is correct
13 Correct 2 ms 12732 KB Output is correct
14 Correct 2 ms 12888 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 2 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12632 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 1 ms 10588 KB Output is correct
25 Correct 2 ms 10664 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 2 ms 10584 KB Output is correct
28 Correct 2 ms 10588 KB Output is correct
29 Correct 2 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 2 ms 10676 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 2 ms 10588 KB Output is correct
35 Correct 2 ms 12632 KB Output is correct
36 Correct 2 ms 12636 KB Output is correct
37 Correct 2 ms 10588 KB Output is correct
38 Correct 1 ms 10588 KB Output is correct
39 Correct 2 ms 10588 KB Output is correct
40 Correct 2 ms 10656 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 2 ms 10588 KB Output is correct
45 Correct 2 ms 10588 KB Output is correct
46 Correct 2 ms 10776 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 1 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 2 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 1 ms 10588 KB Output is correct
54 Correct 3 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12636 KB Output is correct
58 Correct 2 ms 10588 KB Output is correct
59 Correct 2 ms 10584 KB Output is correct
60 Correct 1 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 1 ms 10588 KB Output is correct
65 Correct 2 ms 10588 KB Output is correct
66 Correct 7 ms 14424 KB Output is correct
67 Correct 6 ms 14440 KB Output is correct
68 Correct 7 ms 14684 KB Output is correct
69 Correct 39 ms 13868 KB Output is correct
70 Incorrect 12 ms 13660 KB Output isn't correct
71 Halted 0 ms 0 KB -