Submission #949120

# Submission time Handle Problem Language Result Execution time Memory
949120 2024-03-19T01:25:08 Z MilosMilutinovic IOI Fever (JOI21_fever) C++14
57 / 100
988 ms 108272 KB
#include<bits/stdc++.h>
 
#define pb push_back
#define fi first
#define se second
#define mp make_pair
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef long double ld;
 
template <typename T> bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template <typename T> bool chkmax(T &x,T y){return x<y?x=y,1:0;}
 
ll readint(){
    ll x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

#define info pair<pair<ll,int>,pair<ll,int>>
 
const int dx[]={1,0,-1,0};
const int dy[]={0,1,0,-1};
int n,tot;
int d1[100005],d2[100005],d3[100005],d4[100005],root[4][100005],lch[10000005],rch[10000005],pos[4][100005];
ll x[100005],y[100005],dir[100005];
bool vis[100005];
pair<ll,int> mn[10000005][4],mx[10000005][4];

void change(int&id,int t,int l,int r,int ql,int qr,info v){
	if(!id) id=++tot,mn[id][t]=mp((ll)1e18,0),mx[id][t]=mp((ll)-1e18,0);
	if(ql<=l&&r<=qr){
		mn[id][t]=min(mn[id][t],v.fi);
		mx[id][t]=max(mx[id][t],v.se);
		return;
	}
	int mid=(l+r)/2;
	if(qr<=mid) change(lch[id],t,l,mid,ql,qr,v);
	else if(ql>mid) change(rch[id],t,mid+1,r,ql,qr,v);
	else change(lch[id],t,l,mid,ql,qr,v),change(rch[id],t,mid+1,r,ql,qr,v);
}

pair<ll,int> query(int id,int t,int l,int r,int i,int v){
	if(!id) return mp((ll)1e18,0);
	if(l==r) return min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se));
	int mid=(l+r)/2;
	pair<ll,int> bst;
	if(i<=mid) bst=query(lch[id],t,l,mid,i,v);
	else bst=query(rch[id],t,mid+1,r,i,v);
	bst=min(bst,min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se)));
	return bst;
}
 
int main(){
	n=readint();
	for(int i=1;i<=n;i++) x[i]=readint(),y[i]=readint(),x[i]*=2,y[i]*=2;
	vector<int> xs1,xs2,xs3,xs4;
	for(int i=1;i<=n;i++){
		xs1.pb(x[i]+y[i]);
		xs2.pb(x[i]-y[i]);
		xs3.pb(x[i]);
		xs4.pb(y[i]);
	}
	sort(xs1.begin(),xs1.end());
	xs1.erase(unique(xs1.begin(),xs1.end()),xs1.end());
	sort(xs2.begin(),xs2.end());
	xs2.erase(unique(xs2.begin(),xs2.end()),xs2.end());
	sort(xs3.begin(),xs3.end());
	xs3.erase(unique(xs3.begin(),xs3.end()),xs3.end());
	sort(xs4.begin(),xs4.end());
	xs4.erase(unique(xs4.begin(),xs4.end()),xs4.end());
	int sz1=(int)xs1.size(),sz2=(int)xs2.size(),sz3=(int)xs3.size(),sz4=(int)xs4.size();
	vector<set<pii>> st1(sz1),st2(sz2),st3(sz3),st4(sz4);
	vector<vector<int>> ids1(sz1),ids2(sz2),ids3(sz3),ids4(sz4);
	for(int i=1;i<=n;i++){
		d1[i]=(int)(lower_bound(xs1.begin(),xs1.end(),x[i]+y[i])-xs1.begin());
		d2[i]=(int)(lower_bound(xs2.begin(),xs2.end(),x[i]-y[i])-xs2.begin());
		d3[i]=(int)(lower_bound(xs3.begin(),xs3.end(),x[i])-xs3.begin());
		d4[i]=(int)(lower_bound(xs4.begin(),xs4.end(),y[i])-xs4.begin());
		st1[d1[i]].emplace(x[i],i);
		st2[d2[i]].emplace(x[i],i);
		st3[d3[i]].emplace(x[i],i);
		st4[d3[i]].emplace(y[i],i);
		ids1[d1[i]].pb(i);
		ids2[d2[i]].pb(i);
		ids3[d3[i]].pb(i);
		ids4[d4[i]].pb(i);
	}
	for(int i=0;i<sz1;i++){
		sort(ids1[i].begin(),ids1[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids1[i].size();j++){
			pos[0][ids1[i][j]]=j;
		}
	}
	for(int i=0;i<sz2;i++){
		sort(ids2[i].begin(),ids2[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids2[i].size();j++){
			pos[1][ids2[i][j]]=j;
		}
	}
	for(int i=0;i<sz3;i++){
		sort(ids3[i].begin(),ids3[i].end(),[&](int i,int j){return y[i]<y[j];});
		for(int j=0;j<(int)ids3[i].size();j++){
			pos[2][ids3[i][j]]=j;
		}
	}
	for(int i=0;i<sz4;i++){
		sort(ids4[i].begin(),ids4[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids4[i].size();j++){
			pos[3][ids4[i][j]]=j;
		}
	}
	int ans=0;
	for(int d=0;d<4;d++){
		for(int i=1;i<=n;i++) vis[i]=false;
		dir[1]=d;
		priority_queue<pair<ll,pii>> pq;
		pq.push(mp(0,mp(1,d)));
		for(int i=1;i<=n;i++){
			st1[d1[i]].emplace(x[i],i);
			st2[d2[i]].emplace(x[i],i);
			st3[d3[i]].emplace(x[i],i);
			st4[d4[i]].emplace(y[i],i);
		}
		while(tot){
			for(int j=0;j<4;j++){
				mn[tot][j]=mp((ll)1e18,0);
				mx[tot][j]=mp((ll)-1e18,0);
			}
			lch[tot]=0;
			rch[tot]=0;
			tot--;
		}
		for(int j=0;j<4;j++){
			for(int i=0;i<sz1;i++) root[j][i]=0;
			for(int i=0;i<sz2;i++) root[j][i]=0;
		}
		auto upd=[&](int idx){
			if(vis[idx]) return;
			pair<ll,int> bst=min(query(root[0][d1[idx]],0,0,ids1[d1[idx]].size()-1,pos[0][idx],x[idx]),query(root[1][d2[idx]],1,0,ids2[d2[idx]].size()-1,pos[1][idx],x[idx]));
			bst=min({bst,query(root[2][d3[idx]],2,0,ids3[d3[idx]].size()-1,pos[2][idx],y[idx]/2),query(root[3][d4[idx]],3,0,ids4[d4[idx]].size()-1,pos[3][idx],x[idx]/2)});
			if(bst.fi<(ll)1e17){
				pq.push(mp(-bst.fi,mp(idx,bst.se)));
			}
			return;
		};
		while(!pq.empty()){
			ll t=-pq.top().fi;
			int i=pq.top().se.fi;
			int dd=pq.top().se.se;
			pq.pop();
			if(vis[i]) continue;
			dir[i]=dd;
			vis[i]=true;
			auto it1=st1[d1[i]].lower_bound(mp(x[i],i));
			if(it1!=st1[d1[i]].begin()) upd(prev(it1)->se);
			if(it1!=prev(st1[d1[i]].end())) upd(next(it1)->se);
			st1[d1[i]].erase(it1);
			auto it2=st2[d2[i]].lower_bound(mp(x[i],i));
			if(it2!=st2[d2[i]].begin()) upd(prev(it2)->se);
			if(it2!=prev(st2[d2[i]].end())) upd(next(it2)->se);
			st2[d2[i]].erase(it2);
			auto it3=st3[d3[i]].lower_bound(mp(x[i],i));
			if(it3!=st3[d3[i]].begin()) upd(prev(it3)->se);
			if(it3!=prev(st3[d3[i]].end())) upd(next(it3)->se);
			st3[d3[i]].erase(it3);
			auto it4=st4[d4[i]].lower_bound(mp(y[i],i));
			if(it4!=st4[d4[i]].begin()) upd(prev(it4)->se);
			if(it4!=prev(st4[d4[i]].end())) upd(next(it4)->se);
			st4[d4[i]].erase(it4);
			if(dir[i]==0){
				// up
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1; 
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids3[d3[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if((y[ids3[d3[i]][mid]]-y[i])/2>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					/* if(p!=ids3[d3[i]].size()){
						change(root[2][d3[i]],2,0,ids3[d3[i]].size()-1,p,ids3[d3[i]].size()-1,mp(mp((ll)1e18,0),mp(y[i]/2,1)));
						auto it=st3[d3[i]].lower_bound(mp(y[ids3[d3[i]][p]],ids3[d3[i]][p]));
						if(it!=st3[d3[i]].end()) upd(it->se);
					} */
					for(int j=p;j<ids3[d3[i]].size();j++) pq.push(mp((y[ids3[d3[i]][j]]-y[i])/2,mp(ids3[d3[i]][j],1)));
				}
			}
			if(dir[i]==1){
				// down
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],3)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1; 
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids3[d3[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if((y[i]-y[ids3[d3[i]][mid]])/2>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					/* if(p!=-1){
						change(root[2][d3[i]],2,0,ids3[d3[i]].size()-1,0,p,mp(mp(y[i]/2,1),mp(-(ll)1e18,1)));
						auto it=st3[d3[i]].lower_bound(mp(y[ids3[d3[i]][p]],ids3[d3[i]][p]+1));
						if(it!=st3[d3[i]].begin()) upd(prev(it)->se);
					} */
					for(int j=0;j<=p;j++) pq.push(mp((y[i]-y[ids3[d3[i]][j]]),mp(ids3[d3[i]][j],0)));
				}
			}
			if(dir[i]==2){
				// right
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],1)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids4[d4[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if((x[ids4[d4[i]][mid]]-x[i])/2>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					/* if(p<ids4[d4[i]].size()){
						change(root[3][d4[i]],3,0,ids4[d4[i]].size()-1,p,ids4[d4[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i]/2,3)));
						auto it=st4[d4[i]].lower_bound(mp(x[ids4[d4[i]][p]],ids4[d4[i]][p]));
						if(it!=st4[d4[i]].end()) upd(it->se);
					} */
					for(int j=p;j<(int)ids4[d4[i]].size();j++) pq.push(mp((x[ids4[d4[i]][j]]-x[i])/2,mp(ids4[d4[i]][j],3)));
				}
			}
			if(dir[i]==3){
				// left
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],1),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],0),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids4[d4[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if((x[i]-x[ids4[d4[i]][mid]])/2>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					/* if(p!=-1){
						change(root[3][d4[i]],3,0,ids4[d4[i]].size()-1,0,p,mp(mp(x[i]/2,2),mp((ll)-1e18,3)));
						auto it=st4[d4[i]].lower_bound(mp(x[ids4[d4[i]][p]],ids4[d4[i]][p]+1));
						if(it!=st4[d4[i]].begin()) upd(prev(it)->se);
					} */
					for(int j=0;j<=p;j++) pq.push(mp((x[i]-x[ids4[d4[i]][j]])/2,mp(ids4[d4[i]][j],2)));
				}
			}
		}
		int cnt=0;
		for(int i=1;i<=n;i++) cnt+=vis[i];
		ans=max(ans,cnt);
	}
	printf("%d\n",ans);
}

Compilation message

fever.cpp: In function 'int main()':
fever.cpp:217:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  217 |      for(int j=p;j<ids3[d3[i]].size();j++) pq.push(mp((y[ids3[d3[i]][j]]-y[i])/2,mp(ids3[d3[i]][j],1)));
      |                  ~^~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12632 KB Output is correct
2 Correct 2 ms 12632 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 10584 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12732 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 12636 KB Output is correct
13 Correct 1 ms 12636 KB Output is correct
14 Correct 1 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 1 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 2 ms 10588 KB Output is correct
25 Correct 1 ms 10588 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10636 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12632 KB Output is correct
2 Correct 2 ms 12632 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 10584 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12732 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 12636 KB Output is correct
13 Correct 1 ms 12636 KB Output is correct
14 Correct 1 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 1 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 2 ms 10588 KB Output is correct
25 Correct 1 ms 10588 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10636 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 1 ms 12636 KB Output is correct
37 Correct 1 ms 10588 KB Output is correct
38 Correct 2 ms 10588 KB Output is correct
39 Correct 1 ms 10600 KB Output is correct
40 Correct 1 ms 10588 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 1 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 12636 KB Output is correct
4 Correct 2 ms 10588 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 1 ms 10588 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 10584 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12632 KB Output is correct
2 Correct 2 ms 12632 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 10584 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12732 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 12636 KB Output is correct
13 Correct 1 ms 12636 KB Output is correct
14 Correct 1 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 1 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 2 ms 10588 KB Output is correct
25 Correct 1 ms 10588 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10636 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 1 ms 12636 KB Output is correct
37 Correct 1 ms 10588 KB Output is correct
38 Correct 2 ms 10588 KB Output is correct
39 Correct 1 ms 10600 KB Output is correct
40 Correct 1 ms 10588 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 1 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 2 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 1 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10584 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10584 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10840 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12632 KB Output is correct
2 Correct 2 ms 12632 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 10584 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12732 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 12636 KB Output is correct
13 Correct 1 ms 12636 KB Output is correct
14 Correct 1 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 1 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 2 ms 10588 KB Output is correct
25 Correct 1 ms 10588 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10636 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 1 ms 12636 KB Output is correct
37 Correct 1 ms 10588 KB Output is correct
38 Correct 2 ms 10588 KB Output is correct
39 Correct 1 ms 10600 KB Output is correct
40 Correct 1 ms 10588 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 1 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 2 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 1 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10584 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10584 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10840 KB Output is correct
66 Correct 7 ms 14428 KB Output is correct
67 Correct 7 ms 14428 KB Output is correct
68 Correct 8 ms 14684 KB Output is correct
69 Correct 96 ms 16892 KB Output is correct
70 Incorrect 52 ms 14940 KB Output isn't correct
71 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12632 KB Output is correct
2 Correct 2 ms 12632 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 10584 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12732 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 12636 KB Output is correct
13 Correct 1 ms 12636 KB Output is correct
14 Correct 1 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 1 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 2 ms 10588 KB Output is correct
25 Correct 1 ms 10588 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10636 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 1 ms 12636 KB Output is correct
37 Correct 1 ms 10588 KB Output is correct
38 Correct 2 ms 10588 KB Output is correct
39 Correct 1 ms 10600 KB Output is correct
40 Correct 1 ms 10588 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 1 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 2 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 1 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10584 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10584 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10840 KB Output is correct
66 Correct 403 ms 60232 KB Output is correct
67 Correct 480 ms 72632 KB Output is correct
68 Correct 492 ms 80496 KB Output is correct
69 Correct 716 ms 63928 KB Output is correct
70 Correct 988 ms 63864 KB Output is correct
71 Correct 490 ms 78176 KB Output is correct
72 Correct 500 ms 77848 KB Output is correct
73 Correct 737 ms 68540 KB Output is correct
74 Correct 486 ms 78300 KB Output is correct
75 Correct 513 ms 77640 KB Output is correct
76 Correct 764 ms 70856 KB Output is correct
77 Correct 495 ms 78520 KB Output is correct
78 Correct 650 ms 108272 KB Output is correct
79 Correct 611 ms 108192 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 12632 KB Output is correct
2 Correct 2 ms 12632 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 10584 KB Output is correct
5 Correct 2 ms 12636 KB Output is correct
6 Correct 2 ms 12636 KB Output is correct
7 Correct 2 ms 10588 KB Output is correct
8 Correct 2 ms 12636 KB Output is correct
9 Correct 2 ms 12732 KB Output is correct
10 Correct 2 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 12636 KB Output is correct
13 Correct 1 ms 12636 KB Output is correct
14 Correct 1 ms 12636 KB Output is correct
15 Correct 2 ms 12636 KB Output is correct
16 Correct 1 ms 10588 KB Output is correct
17 Correct 1 ms 10588 KB Output is correct
18 Correct 2 ms 12636 KB Output is correct
19 Correct 1 ms 12636 KB Output is correct
20 Correct 2 ms 12636 KB Output is correct
21 Correct 2 ms 12636 KB Output is correct
22 Correct 2 ms 12636 KB Output is correct
23 Correct 2 ms 12636 KB Output is correct
24 Correct 2 ms 10588 KB Output is correct
25 Correct 1 ms 10588 KB Output is correct
26 Correct 1 ms 10588 KB Output is correct
27 Correct 1 ms 10636 KB Output is correct
28 Correct 1 ms 10588 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 2 ms 10588 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 12636 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 12636 KB Output is correct
36 Correct 1 ms 12636 KB Output is correct
37 Correct 1 ms 10588 KB Output is correct
38 Correct 2 ms 10588 KB Output is correct
39 Correct 1 ms 10600 KB Output is correct
40 Correct 1 ms 10588 KB Output is correct
41 Correct 2 ms 10588 KB Output is correct
42 Correct 2 ms 10588 KB Output is correct
43 Correct 1 ms 10588 KB Output is correct
44 Correct 1 ms 10588 KB Output is correct
45 Correct 1 ms 10588 KB Output is correct
46 Correct 2 ms 10588 KB Output is correct
47 Correct 2 ms 10588 KB Output is correct
48 Correct 2 ms 12636 KB Output is correct
49 Correct 2 ms 10588 KB Output is correct
50 Correct 2 ms 12636 KB Output is correct
51 Correct 1 ms 10588 KB Output is correct
52 Correct 2 ms 10588 KB Output is correct
53 Correct 2 ms 10584 KB Output is correct
54 Correct 2 ms 12636 KB Output is correct
55 Correct 2 ms 10588 KB Output is correct
56 Correct 2 ms 12636 KB Output is correct
57 Correct 2 ms 12632 KB Output is correct
58 Correct 2 ms 10584 KB Output is correct
59 Correct 2 ms 10588 KB Output is correct
60 Correct 2 ms 10588 KB Output is correct
61 Correct 2 ms 12636 KB Output is correct
62 Correct 2 ms 10588 KB Output is correct
63 Correct 2 ms 10588 KB Output is correct
64 Correct 2 ms 10588 KB Output is correct
65 Correct 2 ms 10840 KB Output is correct
66 Correct 7 ms 14428 KB Output is correct
67 Correct 7 ms 14428 KB Output is correct
68 Correct 8 ms 14684 KB Output is correct
69 Correct 96 ms 16892 KB Output is correct
70 Incorrect 52 ms 14940 KB Output isn't correct
71 Halted 0 ms 0 KB -