Submission #947581

#TimeUsernameProblemLanguageResultExecution timeMemory
947581GrindMachineCubeword (CEOI19_cubeword)C++17
100 / 100
808 ms13348 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; typedef long long int ll; typedef long double ld; typedef pair<int,int> pii; typedef pair<ll,ll> pll; #define fastio ios_base::sync_with_stdio(false); cin.tie(NULL) #define pb push_back #define endl '\n' #define sz(a) (int)a.size() #define setbits(x) __builtin_popcountll(x) #define ff first #define ss second #define conts continue #define ceil2(x,y) ((x+y-1)/(y)) #define all(a) a.begin(), a.end() #define rall(a) a.rbegin(), a.rend() #define yes cout << "Yes" << endl #define no cout << "No" << endl #define rep(i,n) for(int i = 0; i < n; ++i) #define rep1(i,n) for(int i = 1; i <= n; ++i) #define rev(i,s,e) for(int i = s; i >= e; --i) #define trav(i,a) for(auto &i : a) template<typename T> void amin(T &a, T b) { a = min(a,b); } template<typename T> void amax(T &a, T b) { a = max(a,b); } #ifdef LOCAL #include "debug.h" #else #define debug(x) 42 #endif /* refs: edi some codes (to understand the edi idea) sum the answers over all lengths how to calculate the ans for a fixed length? key idea: when the letters in some vertices are fixed, the #of cubes that satisfy the fixed letters can be quickly counted which vertices to fix? fix 4 vertices: a = front bottom left b = front top right c = back bottom right d = back top left none of these vertices are adj to each other look at the 4 unfixed vertices each one is adjacent to 3 vertices, all of which are fixed so an unfixed vertex can have any letter, but the words on the 3 edges need to end with the fixed letters precompute f(a,b,c) = #of ordered triplets of words s.t all 3 words start with the same letter, but end with a,b,c respectively this can be used to count the #of cubes satisfying the fixed letters in O(1) for eg, look at the front bottom right vertex it's adj to a,b,c so ways to fill these edges = f(a,b,c) similar argument holds for the other 3 unfixed vertices at the end, the final formula looks like: f(a,b,c)*f(a,b,d)*f(b,c,d)*f(a,c,d) */ const int MOD = 998244353; const int N = 1e5 + 5; const int inf1 = int(1e9) + 5; const ll inf2 = ll(1e18) + 5; void solve(int test_case) { ll n; cin >> n; vector<string> a(n); rep(i,n) cin >> a[i]; rep(i,n){ auto s = a[i]; reverse(all(s)); a.pb(s); } sort(all(a)); a.resize(unique(all(a))-a.begin()); n = sz(a); vector<char> b; trav(s,a){ trav(ch,s){ b.pb(ch); } } sort(all(b)); b.resize(unique(all(b))-b.begin()); ll alpha = sz(b); ll cnt[15][alpha][alpha]; memset(cnt,0,sizeof cnt); rep(i,n){ auto &s = a[i]; ll x = lower_bound(all(b),s[0])-b.begin(); ll y = lower_bound(all(b),s.back())-b.begin(); cnt[sz(s)][x][y]++; } ll f[alpha][alpha][alpha]; ll ans = 0; for(int len = 3; len <= 10; ++len){ memset(f,0,sizeof f); rep(first,alpha){ rep(x,alpha){ rep(y,alpha){ rep(z,alpha){ ll add = cnt[len][first][x]*cnt[len][first][y]*cnt[len][first][z]; f[x][y][z] = (f[x][y][z]+add)%MOD; } } } } rep(w,alpha){ rep(x,alpha){ rep(y,alpha){ rep(z,alpha){ ll add = f[w][x][y]*f[w][x][z]%MOD*f[x][y][z]%MOD*f[w][y][z]; ans = (ans+add)%MOD; } } } } } cout << ans << endl; } int main() { fastio; int t = 1; // cin >> t; rep1(i, t) { solve(i); } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...