This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a,b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a,b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
refs:
edi
some codes (to understand the edi idea)
sum the answers over all lengths
how to calculate the ans for a fixed length?
key idea:
when the letters in some vertices are fixed, the #of cubes that satisfy the fixed letters can be quickly counted
which vertices to fix?
fix 4 vertices:
a = front bottom left
b = front top right
c = back bottom right
d = back top left
none of these vertices are adj to each other
look at the 4 unfixed vertices
each one is adjacent to 3 vertices, all of which are fixed
so an unfixed vertex can have any letter, but the words on the 3 edges need to end with the fixed letters
precompute f(a,b,c) = #of ordered triplets of words s.t all 3 words start with the same letter, but end with a,b,c respectively
this can be used to count the #of cubes satisfying the fixed letters in O(1)
for eg, look at the front bottom right vertex
it's adj to a,b,c
so ways to fill these edges = f(a,b,c)
similar argument holds for the other 3 unfixed vertices
at the end, the final formula looks like:
f(a,b,c)*f(a,b,d)*f(b,c,d)*f(a,c,d)
*/
const int MOD = 998244353;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
void solve(int test_case)
{
ll n; cin >> n;
vector<string> a(n);
rep(i,n) cin >> a[i];
rep(i,n){
auto s = a[i];
reverse(all(s));
a.pb(s);
}
sort(all(a));
a.resize(unique(all(a))-a.begin());
n = sz(a);
vector<char> b;
trav(s,a){
trav(ch,s){
b.pb(ch);
}
}
sort(all(b));
b.resize(unique(all(b))-b.begin());
ll alpha = sz(b);
ll cnt[15][alpha][alpha];
memset(cnt,0,sizeof cnt);
rep(i,n){
auto &s = a[i];
ll x = lower_bound(all(b),s[0])-b.begin();
ll y = lower_bound(all(b),s.back())-b.begin();
cnt[sz(s)][x][y]++;
}
ll f[alpha][alpha][alpha];
ll ans = 0;
for(int len = 3; len <= 10; ++len){
memset(f,0,sizeof f);
rep(first,alpha){
rep(x,alpha){
rep(y,alpha){
rep(z,alpha){
ll add = cnt[len][first][x]*cnt[len][first][y]*cnt[len][first][z];
f[x][y][z] = (f[x][y][z]+add)%MOD;
}
}
}
}
rep(w,alpha){
rep(x,alpha){
rep(y,alpha){
rep(z,alpha){
ll add = f[w][x][y]*f[w][x][z]%MOD*f[x][y][z]%MOD*f[w][y][z];
ans = (ans+add)%MOD;
}
}
}
}
}
cout << ans << endl;
}
int main()
{
fastio;
int t = 1;
// cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |