Submission #943737

# Submission time Handle Problem Language Result Execution time Memory
943737 2024-03-11T19:13:18 Z Pannda Fish 2 (JOI22_fish2) C++17
60 / 100
4000 ms 14424 KB
#include <bits/stdc++.h>
using namespace std;

struct Paint {
    struct Node {
        int mn, cnt;
        int lazy = 0;
        void add(int delta) {
            mn += delta;
            lazy += delta;
        }
        void merge(Node a, Node b) {
            mn = min(a.mn, b.mn);
            cnt = 0;
            if (a.mn == mn) cnt += a.cnt;
            if (b.mn == mn) cnt += b.cnt;
        }
    };

    int n;
    vector<Node> nodes;

    Paint(int n) : n(n), nodes(4 * n) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                nodes[idx].mn = 0;
                nodes[idx].cnt = 1;
            } else {
                int m = (l + r) >> 1;
                self(self, 2 * idx + 1, l, m);
                self(self, 2 * idx + 2, m, r);
                nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    void down(int idx) {
        nodes[2 * idx + 1].add(nodes[idx].lazy);
        nodes[2 * idx + 2].add(nodes[idx].lazy);
        nodes[idx].lazy = 0;
    }

    void add(int ql, int qr, int delta) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) return nodes[idx].add(delta);
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
            nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
        };
        dfs(dfs, 0, 0, n);
    }

    int countZero(int ql, int qr) {
        int fetch = 0;
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) {
                fetch += nodes[idx].mn == 0 ? nodes[idx].cnt : 0;
                return;
            }
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
        };
        dfs(dfs, 0, 0, n);
        return fetch;
    }
};

struct SegmentWalk {
    int n;
    vector<int> mx;

    SegmentWalk(int n) : n(n), mx(4 * n, 0) {}

    void set(int i, int val) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                mx[idx] = val;
            } else {
                int m = (l + r) >> 1;
                if (i < m) self(self, 2 * idx + 1, l, m);
                else self(self, 2 * idx + 2, m, r);
                mx[idx] = max(mx[2 * idx + 1], mx[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    int walk(int ql, int qr, long long bound, bool request_leftmost) { // in [ql, qr), returns the leftmost (rightmost) position with value > 'bound'
        auto dfs = [&](auto self, int idx, int l, int r) -> int {
            if (r <= ql || qr <= l || mx[idx] <= bound) return -1;
            if (ql <= l && r <= qr) {
                while (l + 1 < r) {
                    int m = (l + r) >> 1;
                    if (request_leftmost) {
                        if (mx[2 * idx + 1] > bound) idx = 2 * idx + 1, r = m;
                        else idx = 2 * idx + 2, l = m;
                    } else {
                        if (mx[2 * idx + 2] > bound) idx = 2 * idx + 2, l = m;
                        else idx = 2 * idx + 1, r = m;
                    }
                }
                return l;
            }
            int m = (l + r) >> 1;
            if (request_leftmost) {
                int get = self(self, 2 * idx + 1, l, m);
                if (get != -1) return get;
                return self(self, 2 * idx + 2, m, r);
            } else {
                int get = self(self, 2 * idx + 2, m, r);
                if (get != -1) return get;
                return self(self, 2 * idx + 1, l, m);
            }
        };
        return dfs(dfs, 0, 0, n);
    }
};

struct Fenwick {
    int n;
    vector<long long> bit;

    Fenwick(int n) : n(n), bit(n + 1, 0) {}

    void add(int i, int delta) {
        for (i++; i <= n; i += i & -i) bit[i] += delta;
    }

    long long sum(int i) {
        long long res = 0;
        for (; i > 0; i -= i & -i) res += bit[i];
        return res;
    }

    long long sum(int l, int r) {
        return sum(r) - sum(l);
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
//    freopen("inp.inp", "r", stdin);
//    freopen("out.out", "w", stdout);

    int n;
    cin >> n;

    vector<int> a(n);
    Fenwick fen(n);
    SegmentWalk segwalk(n);

    for (int i = 0; i < n; i++) {
        cin >> a[i];
        fen.add(i, a[i]);
        segwalk.set(i, a[i]);
    }

    auto findSaturatedInterval = [&](int ql, int qr, int &l, int &r, long long &sum) -> void { // O(log^2), find the tightest saturated interval (or [l, r)) containing the initial interval [l, r)
        while (ql < l || r < qr) {
            long long old_sum = sum;
            if (ql < l) {
                int p = segwalk.walk(ql, l, sum, false);
                if (p == -1) {
                    sum += fen.sum(ql, l);
                    l = ql;
                } else {
                    sum += fen.sum(p + 1, l);
                    l = p + 1;
                    if (sum >= a[p]) {
                        sum += a[p];
                        l = p;
                    }
                }
            }
            if (r < qr) {
                int p = segwalk.walk(r, qr, sum, true);
                if (p == -1) {
                    sum += fen.sum(r, qr);
                    r = qr;
                } else {
                    sum += fen.sum(r, p);
                    r = p;
                    if (sum >= a[p]) {
                        sum += a[p];
                        r = p + 1;
                    }
                }
            }
            if (sum == old_sum) break;
        }
    };

    auto findAllSaturatedIntervals = [&](int ql, int qr, int i) -> vector<array<int, 2>> { // O(log^2), find all saturated intervals containing i
        vector<array<int, 2>> res;
        int l = i, r = i + 1;
        long long sum = a[i];
        while (true) {
            findSaturatedInterval(ql, qr, l, r, sum);
            if (l == ql && r == qr) break;
            res.push_back({l, r});
            if (l == ql || (r < qr && a[r] <= a[l - 1])) {
                sum += a[r];
                r = r + 1;
            } else {
                sum += a[l - 1];
                l = l - 1;
            }
        }
        return res;
    };

    Paint paint(n);
    SegmentWalk wow(n);
    vector<vector<int>> why(n);

    auto erase = [&](int ql, int qr) -> vector<array<int, 2>> { // erases all intervals containing [ql, qr), return the set of deleted intervals
        vector<array<int, 2>> res;
        if (ql < 0 || qr > n) return res;
        while (true) {
            int l = wow.walk(0, ql + 1, qr - 1, true);
            if (l == -1) break;
            int r = why[l].back();
            res.push_back({l, r});
            paint.add(l, r, -1);
            why[l].pop_back();
            if (why[l].empty()) wow.set(l, 0);
            else wow.set(l, why[l].back());
        }
        return res;
    };

    auto insert = [&](int l, int r) -> void {
        if (find(why[l].begin(), why[l].end(), r) != why[l].end()) return;
        auto it = why[l].begin();
        while (it != why[l].end() && *it < r) ++it;
        why[l].insert(it, r);
        wow.set(l, why[l].back());
        paint.add(l, r, +1);
    };

    for (int i = 0; i < n; i++) {
        int l = i, r = i + 1;
        long long sum = a[i];
        findSaturatedInterval(0, n, l, r, sum);
        if (l != 0 || r != n) insert(l, r);
    }

    int q;
    cin >> q;
    while (q--) {
        int type;
        cin >> type;
        if (type == 1) {
            int i, x;
            cin >> i >> x;
            i--;
            auto subinsert = [&](int i) -> void {
                if (i < 0 || i >= n) return;
                for (auto [l, r] : findAllSaturatedIntervals(0, n, i)) insert(l, r);
            };
            erase(i - 1, i);
            erase(i, i + 1);
            erase(i + 1, i + 2);
            fen.add(i, -a[i] + x);
            a[i] = x;
            segwalk.set(i, x);
            subinsert(i - 1);
            subinsert(i);
            subinsert(i + 1);
        }
        if (type == 2) {
            int l, r;
            cin >> l >> r;
            l--;
            vector<array<int, 2>> erase0 = erase(l - 1, l + 1);
            vector<array<int, 2>> erase1 = erase(r - 1, r + 1);
            vector<array<int, 2>> erase2 = erase(l, r);
            vector<array<int, 2>> insert0 = findAllSaturatedIntervals(l, r, l);
            vector<array<int, 2>> insert1 = findAllSaturatedIntervals(l, r, r - 1);
            for (auto [l, r] : insert0) paint.add(l, r, +1);
            for (auto [l, r] : insert1) paint.add(l, r, +1);
            cout << paint.countZero(l, r) << '\n';
            for (auto [l, r] : insert0) paint.add(l, r, -1);
            for (auto [l, r] : insert1) paint.add(l, r, -1);
            for (auto [l, r] : erase0) insert(l, r);
            for (auto [l, r] : erase1) insert(l, r);
            for (auto [l, r] : erase2) insert(l, r);
        }
    }
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 6 ms 348 KB Output is correct
6 Correct 5 ms 344 KB Output is correct
7 Correct 5 ms 348 KB Output is correct
8 Correct 9 ms 348 KB Output is correct
9 Correct 5 ms 344 KB Output is correct
10 Correct 2 ms 344 KB Output is correct
11 Correct 2 ms 348 KB Output is correct
12 Correct 3 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 2 ms 348 KB Output is correct
15 Correct 4 ms 344 KB Output is correct
16 Correct 3 ms 348 KB Output is correct
17 Correct 4 ms 348 KB Output is correct
18 Correct 3 ms 348 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 2 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 109 ms 12376 KB Output is correct
3 Correct 104 ms 12360 KB Output is correct
4 Correct 131 ms 12116 KB Output is correct
5 Correct 102 ms 12372 KB Output is correct
6 Correct 68 ms 12884 KB Output is correct
7 Correct 115 ms 12372 KB Output is correct
8 Correct 69 ms 12888 KB Output is correct
9 Correct 123 ms 12352 KB Output is correct
10 Correct 96 ms 12880 KB Output is correct
11 Correct 99 ms 12884 KB Output is correct
12 Correct 83 ms 12884 KB Output is correct
13 Correct 87 ms 12744 KB Output is correct
14 Correct 81 ms 13196 KB Output is correct
15 Correct 89 ms 13040 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 6 ms 348 KB Output is correct
6 Correct 5 ms 344 KB Output is correct
7 Correct 5 ms 348 KB Output is correct
8 Correct 9 ms 348 KB Output is correct
9 Correct 5 ms 344 KB Output is correct
10 Correct 2 ms 344 KB Output is correct
11 Correct 2 ms 348 KB Output is correct
12 Correct 3 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 2 ms 348 KB Output is correct
15 Correct 4 ms 344 KB Output is correct
16 Correct 3 ms 348 KB Output is correct
17 Correct 4 ms 348 KB Output is correct
18 Correct 3 ms 348 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 2 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 109 ms 12376 KB Output is correct
23 Correct 104 ms 12360 KB Output is correct
24 Correct 131 ms 12116 KB Output is correct
25 Correct 102 ms 12372 KB Output is correct
26 Correct 68 ms 12884 KB Output is correct
27 Correct 115 ms 12372 KB Output is correct
28 Correct 69 ms 12888 KB Output is correct
29 Correct 123 ms 12352 KB Output is correct
30 Correct 96 ms 12880 KB Output is correct
31 Correct 99 ms 12884 KB Output is correct
32 Correct 83 ms 12884 KB Output is correct
33 Correct 87 ms 12744 KB Output is correct
34 Correct 81 ms 13196 KB Output is correct
35 Correct 89 ms 13040 KB Output is correct
36 Correct 132 ms 12112 KB Output is correct
37 Correct 130 ms 12440 KB Output is correct
38 Correct 123 ms 12372 KB Output is correct
39 Correct 124 ms 12196 KB Output is correct
40 Correct 124 ms 12368 KB Output is correct
41 Correct 75 ms 12820 KB Output is correct
42 Correct 72 ms 12880 KB Output is correct
43 Correct 134 ms 12884 KB Output is correct
44 Correct 126 ms 12340 KB Output is correct
45 Correct 122 ms 13152 KB Output is correct
46 Correct 122 ms 12880 KB Output is correct
47 Correct 109 ms 12352 KB Output is correct
48 Correct 96 ms 12728 KB Output is correct
49 Correct 94 ms 12868 KB Output is correct
50 Correct 87 ms 13136 KB Output is correct
51 Correct 91 ms 13140 KB Output is correct
52 Correct 86 ms 13220 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 109 ms 12376 KB Output is correct
3 Correct 104 ms 12360 KB Output is correct
4 Correct 131 ms 12116 KB Output is correct
5 Correct 102 ms 12372 KB Output is correct
6 Correct 68 ms 12884 KB Output is correct
7 Correct 115 ms 12372 KB Output is correct
8 Correct 69 ms 12888 KB Output is correct
9 Correct 123 ms 12352 KB Output is correct
10 Correct 96 ms 12880 KB Output is correct
11 Correct 99 ms 12884 KB Output is correct
12 Correct 83 ms 12884 KB Output is correct
13 Correct 87 ms 12744 KB Output is correct
14 Correct 81 ms 13196 KB Output is correct
15 Correct 89 ms 13040 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 2315 ms 12808 KB Output is correct
18 Correct 2603 ms 12736 KB Output is correct
19 Correct 2271 ms 12896 KB Output is correct
20 Correct 3400 ms 12948 KB Output is correct
21 Correct 2261 ms 12788 KB Output is correct
22 Correct 2567 ms 12880 KB Output is correct
23 Correct 2392 ms 13124 KB Output is correct
24 Correct 3366 ms 12780 KB Output is correct
25 Correct 2341 ms 13036 KB Output is correct
26 Correct 3453 ms 13012 KB Output is correct
27 Correct 374 ms 13536 KB Output is correct
28 Correct 371 ms 13376 KB Output is correct
29 Correct 369 ms 13384 KB Output is correct
30 Correct 1983 ms 12884 KB Output is correct
31 Correct 2152 ms 12728 KB Output is correct
32 Execution timed out 4038 ms 13516 KB Time limit exceeded
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 109 ms 12376 KB Output is correct
3 Correct 104 ms 12360 KB Output is correct
4 Correct 131 ms 12116 KB Output is correct
5 Correct 102 ms 12372 KB Output is correct
6 Correct 68 ms 12884 KB Output is correct
7 Correct 115 ms 12372 KB Output is correct
8 Correct 69 ms 12888 KB Output is correct
9 Correct 123 ms 12352 KB Output is correct
10 Correct 96 ms 12880 KB Output is correct
11 Correct 99 ms 12884 KB Output is correct
12 Correct 83 ms 12884 KB Output is correct
13 Correct 87 ms 12744 KB Output is correct
14 Correct 81 ms 13196 KB Output is correct
15 Correct 89 ms 13040 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1803 ms 12744 KB Output is correct
18 Correct 960 ms 14196 KB Output is correct
19 Correct 1743 ms 12664 KB Output is correct
20 Correct 873 ms 14028 KB Output is correct
21 Correct 1882 ms 13136 KB Output is correct
22 Correct 960 ms 14424 KB Output is correct
23 Correct 1628 ms 12560 KB Output is correct
24 Correct 906 ms 14260 KB Output is correct
25 Correct 1533 ms 12520 KB Output is correct
26 Correct 378 ms 13648 KB Output is correct
27 Correct 454 ms 13652 KB Output is correct
28 Correct 708 ms 13788 KB Output is correct
29 Correct 410 ms 13780 KB Output is correct
30 Correct 473 ms 13960 KB Output is correct
31 Correct 813 ms 14336 KB Output is correct
32 Correct 895 ms 14396 KB Output is correct
33 Correct 704 ms 13012 KB Output is correct
34 Correct 810 ms 14404 KB Output is correct
35 Correct 803 ms 13192 KB Output is correct
36 Correct 804 ms 14240 KB Output is correct
37 Correct 821 ms 13916 KB Output is correct
38 Correct 726 ms 13964 KB Output is correct
39 Correct 533 ms 14340 KB Output is correct
40 Correct 368 ms 13904 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 6 ms 348 KB Output is correct
6 Correct 5 ms 344 KB Output is correct
7 Correct 5 ms 348 KB Output is correct
8 Correct 9 ms 348 KB Output is correct
9 Correct 5 ms 344 KB Output is correct
10 Correct 2 ms 344 KB Output is correct
11 Correct 2 ms 348 KB Output is correct
12 Correct 3 ms 344 KB Output is correct
13 Correct 4 ms 348 KB Output is correct
14 Correct 2 ms 348 KB Output is correct
15 Correct 4 ms 344 KB Output is correct
16 Correct 3 ms 348 KB Output is correct
17 Correct 4 ms 348 KB Output is correct
18 Correct 3 ms 348 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 2 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 109 ms 12376 KB Output is correct
23 Correct 104 ms 12360 KB Output is correct
24 Correct 131 ms 12116 KB Output is correct
25 Correct 102 ms 12372 KB Output is correct
26 Correct 68 ms 12884 KB Output is correct
27 Correct 115 ms 12372 KB Output is correct
28 Correct 69 ms 12888 KB Output is correct
29 Correct 123 ms 12352 KB Output is correct
30 Correct 96 ms 12880 KB Output is correct
31 Correct 99 ms 12884 KB Output is correct
32 Correct 83 ms 12884 KB Output is correct
33 Correct 87 ms 12744 KB Output is correct
34 Correct 81 ms 13196 KB Output is correct
35 Correct 89 ms 13040 KB Output is correct
36 Correct 132 ms 12112 KB Output is correct
37 Correct 130 ms 12440 KB Output is correct
38 Correct 123 ms 12372 KB Output is correct
39 Correct 124 ms 12196 KB Output is correct
40 Correct 124 ms 12368 KB Output is correct
41 Correct 75 ms 12820 KB Output is correct
42 Correct 72 ms 12880 KB Output is correct
43 Correct 134 ms 12884 KB Output is correct
44 Correct 126 ms 12340 KB Output is correct
45 Correct 122 ms 13152 KB Output is correct
46 Correct 122 ms 12880 KB Output is correct
47 Correct 109 ms 12352 KB Output is correct
48 Correct 96 ms 12728 KB Output is correct
49 Correct 94 ms 12868 KB Output is correct
50 Correct 87 ms 13136 KB Output is correct
51 Correct 91 ms 13140 KB Output is correct
52 Correct 86 ms 13220 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 2315 ms 12808 KB Output is correct
55 Correct 2603 ms 12736 KB Output is correct
56 Correct 2271 ms 12896 KB Output is correct
57 Correct 3400 ms 12948 KB Output is correct
58 Correct 2261 ms 12788 KB Output is correct
59 Correct 2567 ms 12880 KB Output is correct
60 Correct 2392 ms 13124 KB Output is correct
61 Correct 3366 ms 12780 KB Output is correct
62 Correct 2341 ms 13036 KB Output is correct
63 Correct 3453 ms 13012 KB Output is correct
64 Correct 374 ms 13536 KB Output is correct
65 Correct 371 ms 13376 KB Output is correct
66 Correct 369 ms 13384 KB Output is correct
67 Correct 1983 ms 12884 KB Output is correct
68 Correct 2152 ms 12728 KB Output is correct
69 Execution timed out 4038 ms 13516 KB Time limit exceeded
70 Halted 0 ms 0 KB -