답안 #943721

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
943721 2024-03-11T18:40:25 Z Pannda Fish 2 (JOI22_fish2) C++17
8 / 100
130 ms 18756 KB
#include <bits/stdc++.h>
using namespace std;

struct Paint {
    struct Node {
        int mn, cnt;
        int lazy = 0;
        void add(int delta) {
            mn += delta;
            lazy += delta;
        }
        void merge(Node a, Node b) {
            mn = min(a.mn, b.mn);
            cnt = 0;
            if (a.mn == mn) cnt += a.cnt;
            if (b.mn == mn) cnt += b.cnt;
        }
    };

    int n;
    vector<Node> nodes;

    Paint(int n) : n(n), nodes(4 * n) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                nodes[idx].mn = 0;
                nodes[idx].cnt = 1;
            } else {
                int m = (l + r) >> 1;
                self(self, 2 * idx + 1, l, m);
                self(self, 2 * idx + 2, m, r);
                nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    void down(int idx) {
        nodes[2 * idx + 1].add(nodes[idx].lazy);
        nodes[2 * idx + 2].add(nodes[idx].lazy);
        nodes[idx].lazy = 0;
    }

    void add(int ql, int qr, int delta) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) return nodes[idx].add(delta);
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
            nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
        };
        dfs(dfs, 0, 0, n);
    }

    int countZero(int ql, int qr) {
        int fetch = 0;
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) {
                fetch += nodes[idx].mn == 0 ? nodes[idx].cnt : 0;
                return;
            }
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
        };
        dfs(dfs, 0, 0, n);
        return fetch;
    }
};

struct SegmentWalk {
    int n;
    vector<int> mx;

    SegmentWalk(int n) : n(n), mx(4 * n, 0) {}

    void set(int i, int val) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                mx[idx] = val;
            } else {
                int m = (l + r) >> 1;
                if (i < m) self(self, 2 * idx + 1, l, m);
                else self(self, 2 * idx + 2, m, r);
                mx[idx] = max(mx[2 * idx + 1], mx[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    int walk(int ql, int qr, long long bound, bool request_leftmost) { // in [ql, qr), returns the leftmost (rightmost) position with value > 'bound'
        auto dfs = [&](auto self, int idx, int l, int r) -> int {
            if (r <= ql || qr <= l || mx[idx] <= bound) return -1;
            if (ql <= l && r <= qr) {
                while (l + 1 < r) {
                    int m = (l + r) >> 1;
                    if (request_leftmost) {
                        if (mx[2 * idx + 1] > bound) idx = 2 * idx + 1, r = m;
                        else idx = 2 * idx + 2, l = m;
                    } else {
                        if (mx[2 * idx + 2] > bound) idx = 2 * idx + 2, l = m;
                        else idx = 2 * idx + 1, r = m;
                    }
                }
                return l;
            }
            int m = (l + r) >> 1;
            if (request_leftmost) {
                int get = self(self, 2 * idx + 1, l, m);
                if (get != -1) return get;
                return self(self, 2 * idx + 2, m, r);
            } else {
                int get = self(self, 2 * idx + 2, m, r);
                if (get != -1) return get;
                return self(self, 2 * idx + 1, l, m);
            }
        };
        return dfs(dfs, 0, 0, n);
    }
};

struct Fenwick {
    int n;
    vector<long long> bit;

    Fenwick(int n) : n(n), bit(n + 1, 0) {}

    void add(int i, int delta) {
        for (i++; i <= n; i += i & -i) bit[i] += delta;
    }

    long long sum(int i) {
        long long res = 0;
        for (; i > 0; i -= i & -i) res += bit[i];
        return res;
    }

    long long sum(int l, int r) {
        return sum(r) - sum(l);
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
//    freopen("inp.inp", "r", stdin);
//    freopen("out.out", "w", stdout);

    int n;
    cin >> n;

    vector<int> a(n);
    Fenwick fen(n);
    SegmentWalk segwalk(n);

    for (int i = 0; i < n; i++) {
        cin >> a[i];
        fen.add(i, a[i]);
        segwalk.set(i, a[i]);
    }

    auto findSaturatedInterval = [&](int ql, int qr, int &l, int &r, long long &sum) -> void { // O(log^2), find the tightest saturated interval (or [l, r)) containing the initial interval [l, r)
        while (ql < l || r < qr) {
            long long old_sum = sum;
            if (ql < l) {
                int p = segwalk.walk(ql, l, sum, false);
                if (p == -1) {
                    sum += fen.sum(ql, l);
                    l = ql;
                } else {
                    sum += fen.sum(p + 1, l);
                    l = p + 1;
                    if (sum >= a[p]) {
                        sum += a[p];
                        l = p;
                    }
                }
            }
            if (r < qr) {
                int p = segwalk.walk(r, qr, sum, true);
                if (p == -1) {
                    sum += fen.sum(r, qr);
                    r = qr;
                } else {
                    sum += fen.sum(r, p);
                    r = p;
                    if (sum >= a[p]) {
                        sum += a[p];
                        r = p + 1;
                    }
                }
            }
            if (sum == old_sum) break;
        }
    };

    auto findAllSaturatedIntervals = [&](int ql, int qr, int i) -> vector<array<int, 2>> { // O(log^2), find all saturated intervals containing i
        vector<array<int, 2>> res;
        int l = i, r = i + 1;
        long long sum = a[i];
        while (true) {
            findSaturatedInterval(ql, qr, l, r, sum);
            if (l == ql && r == qr) break;
            res.push_back({l, r});
            if (l == ql || (r < qr && a[r] <= a[l - 1])) {
                sum += a[r];
                r = r + 1;
            } else {
                sum += a[l - 1];
                l = l - 1;
            }
        }
        return res;
    };

    Paint paint(n);
    SegmentWalk wow(n);
    vector<set<int>> why(n);

    auto erase = [&](int ql, int qr) -> vector<array<int, 2>> { // erases all intervals containing [ql, qr), return the set of deleted intervals
        vector<array<int, 2>> res;
        while (true) {
            int l = wow.walk(0, ql, qr - 1, true);
            if (l == -1) break;
            int r = *why[l].rbegin();
            paint.add(l, r, -1);
            res.push_back({l, r});
            why[l].erase(r);
            if (why[l].empty()) wow.set(l, 0);
            else wow.set(l, *why[l].rbegin());
        }
        return res;
    };

    auto insert = [&](int l, int r) -> void {
        if (why[l].count(r)) return;
        why[l].insert(r);
        wow.set(l, *why[l].rbegin());
        paint.add(l, r, +1);
    };

    for (int i = 0; i < n; i++) {
        int l = i, r = i + 1;
        long long sum = a[i];
        findSaturatedInterval(0, n, l, r, sum);
        if (l != 0 || r != n) insert(l, r);
    }

    int q;
    cin >> q;
    while (q--) {
        int type;
        cin >> type;
        if (type == 1) {
            int i, x;
            cin >> i >> x;
            i--;
            auto subinsert = [&](int i) -> void {
                if (i < 0 || i >= n) return;
                for (auto [l, r] : findAllSaturatedIntervals(0, n, i)) insert(l, r);
            };
            erase(i, i + 1);
            erase(i - 1, i);
            erase(i + 1, i + 2);
            fen.add(i, -a[i] + x);
            a[i] = x;
            segwalk.set(i, x);
            subinsert(i);
            subinsert(i - 1);
            subinsert(i + 1);
        }
        if (type == 2) {
            int l, r;
            cin >> l >> r;
            l--;

            // assumes l = 0 and r = n (subtask 5)
            cout << paint.countZero(0, n) << '\n';
        }
    }
}
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 117 ms 18684 KB Output is correct
3 Correct 109 ms 17844 KB Output is correct
4 Correct 113 ms 18756 KB Output is correct
5 Correct 124 ms 17892 KB Output is correct
6 Correct 84 ms 16868 KB Output is correct
7 Correct 130 ms 15360 KB Output is correct
8 Correct 70 ms 16724 KB Output is correct
9 Correct 127 ms 15428 KB Output is correct
10 Correct 112 ms 16536 KB Output is correct
11 Correct 117 ms 16072 KB Output is correct
12 Correct 96 ms 16212 KB Output is correct
13 Correct 95 ms 16212 KB Output is correct
14 Correct 88 ms 17876 KB Output is correct
15 Correct 101 ms 17748 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 117 ms 18684 KB Output is correct
3 Correct 109 ms 17844 KB Output is correct
4 Correct 113 ms 18756 KB Output is correct
5 Correct 124 ms 17892 KB Output is correct
6 Correct 84 ms 16868 KB Output is correct
7 Correct 130 ms 15360 KB Output is correct
8 Correct 70 ms 16724 KB Output is correct
9 Correct 127 ms 15428 KB Output is correct
10 Correct 112 ms 16536 KB Output is correct
11 Correct 117 ms 16072 KB Output is correct
12 Correct 96 ms 16212 KB Output is correct
13 Correct 95 ms 16212 KB Output is correct
14 Correct 88 ms 17876 KB Output is correct
15 Correct 101 ms 17748 KB Output is correct
16 Incorrect 0 ms 348 KB Output isn't correct
17 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 117 ms 18684 KB Output is correct
3 Correct 109 ms 17844 KB Output is correct
4 Correct 113 ms 18756 KB Output is correct
5 Correct 124 ms 17892 KB Output is correct
6 Correct 84 ms 16868 KB Output is correct
7 Correct 130 ms 15360 KB Output is correct
8 Correct 70 ms 16724 KB Output is correct
9 Correct 127 ms 15428 KB Output is correct
10 Correct 112 ms 16536 KB Output is correct
11 Correct 117 ms 16072 KB Output is correct
12 Correct 96 ms 16212 KB Output is correct
13 Correct 95 ms 16212 KB Output is correct
14 Correct 88 ms 17876 KB Output is correct
15 Correct 101 ms 17748 KB Output is correct
16 Incorrect 1 ms 600 KB Output isn't correct
17 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -