Submission #943666

# Submission time Handle Problem Language Result Execution time Memory
943666 2024-03-11T17:49:50 Z Pannda Fish 2 (JOI22_fish2) C++17
8 / 100
1981 ms 15980 KB
#include <bits/stdc++.h>
using namespace std;

struct Paint {
    struct Node {
        int mn, cnt;
        int lazy = 0;
        void add(int delta) {
            mn += delta;
            lazy += delta;
        }
        void merge(Node a, Node b) {
            mn = min(a.mn, b.mn);
            cnt = 0;
            if (a.mn == mn) cnt += a.cnt;
            if (b.mn == mn) cnt += b.cnt;
        }
    };

    int n;
    vector<Node> nodes;

    Paint(int n) : n(n), nodes(4 * n) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                nodes[idx].mn = 0;
                nodes[idx].cnt = 1;
            } else {
                int m = (l + r) >> 1;
                self(self, 2 * idx + 1, l, m);
                self(self, 2 * idx + 2, m, r);
                nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    void down(int idx) {
        nodes[2 * idx + 1].add(nodes[idx].lazy);
        nodes[2 * idx + 2].add(nodes[idx].lazy);
        nodes[idx].lazy = 0;
    }

    void add(int ql, int qr, int delta) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) return nodes[idx].add(delta);
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
            nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
        };
        dfs(dfs, 0, 0, n);
    }

    int countZero(int ql, int qr) {
        int fetch = 0;
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) {
                fetch += nodes[idx].mn == 0 ? nodes[idx].cnt : 0;
                return;
            }
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
        };
        dfs(dfs, 0, 0, n);
        return fetch;
    }
};

struct SegmentWalk {
    int n;
    vector<int> mx;

    SegmentWalk(int n) : n(n), mx(4 * n, 0) {}

    void set(int i, int val) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                mx[idx] = val;
            } else {
                int m = (l + r) >> 1;
                if (i < m) self(self, 2 * idx + 1, l, m);
                else self(self, 2 * idx + 2, m, r);
                mx[idx] = max(mx[2 * idx + 1], mx[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    int walk(int ql, int qr, long long bound, bool request_leftmost) { // in [ql, qr), returns the leftmost (rightmost) position with value > 'bound'
        auto dfs = [&](auto self, int idx, int l, int r) -> int {
            if (r <= ql || qr <= l || mx[idx] <= bound) return -1;
            if (ql <= l && r <= qr) {
                while (l + 1 < r) {
                    int m = (l + r) >> 1;
                    if (request_leftmost) {
                        if (mx[2 * idx + 1] > bound) idx = 2 * idx + 1, r = m;
                        else idx = 2 * idx + 2, l = m;
                    } else {
                        if (mx[2 * idx + 2] > bound) idx = 2 * idx + 2, l = m;
                        else idx = 2 * idx + 1, r = m;
                    }
                }
                return l;
            }
            int m = (l + r) >> 1;
            if (request_leftmost) {
                int get = self(self, 2 * idx + 1, l, m);
                if (get != -1) return get;
                return self(self, 2 * idx + 2, m, r);
            } else {
                int get = self(self, 2 * idx + 2, m, r);
                if (get != -1) return get;
                return self(self, 2 * idx + 1, l, m);
            }
        };
        return dfs(dfs, 0, 0, n);
    }
};

struct Fenwick {
    int n;
    vector<long long> bit;

    Fenwick(int n) : n(n), bit(n + 1, 0) {}

    void add(int i, int delta) {
        for (i++; i <= n; i += i & -i) bit[i] += delta;
    }

    long long sum(int i) {
        long long res = 0;
        for (; i > 0; i -= i & -i) res += bit[i];
        return res;
    }

    long long sum(int l, int r) {
        return sum(r) - sum(l);
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
//    freopen("inp.inp", "r", stdin);
//    freopen("out.out", "w", stdout);

    int n;
    cin >> n;

    vector<int> a(n);
    Fenwick fen(n);
    SegmentWalk segwalk(n);

    for (int i = 0; i < n; i++) {
        cin >> a[i];
        fen.add(i, a[i]);
        segwalk.set(i, a[i]);
    }

    auto findSaturatedInterval = [&](int ql, int qr, int &l, int &r, long long &sum) -> void { // O(log^2), find the tightest saturated interval (or [l, r)) containing the initial interval [l, r)
        while (ql < l || r < qr) {
            long long old_sum = sum;
            if (ql < l) {
                int p = segwalk.walk(ql, l, sum, false);
                if (p == -1) {
                    sum += fen.sum(ql, l);
                    l = ql;
                } else {
                    sum += fen.sum(p + 1, l);
                    l = p + 1;
                    if (sum >= a[p]) {
                        sum += a[p];
                        l = p;
                    }
                }
            }
            if (r < qr) {
                int p = segwalk.walk(r, qr, sum, true);
                if (p == -1) {
                    sum += fen.sum(r, qr);
                    r = qr;
                } else {
                    sum += fen.sum(r, p);
                    r = p;
                    if (sum >= a[p]) {
                        sum += a[p];
                        r = p + 1;
                    }
                }
            }
            if (sum == old_sum) break;
        }
    };

    auto findAllSaturatedIntervals = [&](int ql, int qr, int i) -> vector<array<int, 2>> { // O(log^2), find all saturated intervals containing i
        vector<array<int, 2>> res;
        int l = i, r = i + 1;
        long long sum = a[i];
        while (true) {
            findSaturatedInterval(ql, qr, l, r, sum);
            if (l == ql && r == qr) break;
            res.push_back({l, r});
            if (l == ql || (r < qr && a[r] <= a[l - 1])) {
                sum += a[r];
                r = r + 1;
            } else {
                sum += a[l - 1];
                l = l - 1;
            }
        }
        return res;
    };

    Paint paint(n);
    set<array<int, 2>> saturated_intervals_lr;
    set<array<int, 2>> saturated_intervals_rl;
    for (int i = 0; i < n; i++) {
        int l = i, r = i + 1;
        long long sum = a[i];
        findSaturatedInterval(0, n, l, r, sum);
        if (l != 0 || r != n) {
            if (!saturated_intervals_lr.count({l, r})) {
                saturated_intervals_lr.insert({l, r});
                saturated_intervals_rl.insert({r, l});
                paint.add(l, r, +1);
            }
        }
    }

    int q;
    cin >> q;
    while (q--) {
        int type;
        cin >> type;
        if (type == 1) {
            int i, x;
            cin >> i >> x;
            i--;

            fen.add(i, -a[i] + x);
            a[i] = x;
            segwalk.set(i, x);

            auto erase = [&](int i) { // erase from paint all intervals containing i
                if (i < 0 || i >= n) return;
                while (!saturated_intervals_lr.empty()) {
                    auto it = saturated_intervals_lr.lower_bound(array<int, 2>{i + 1, -1});
                    if (it == saturated_intervals_lr.begin()) break;
                    --it;
                    auto [l, r] = *it;
                    if (r <= i) break;
                    saturated_intervals_lr.erase(it);
                    saturated_intervals_rl.erase({r, l});
                    paint.add(l, r, -1);
                }
                while (!saturated_intervals_rl.empty()) {
                    auto it = saturated_intervals_rl.lower_bound(array<int, 2>{i + 1, -1});
                    if (it == saturated_intervals_rl.end()) break;
                    auto [r, l] = *it;
                    if (i < l) break;
                    saturated_intervals_rl.erase(it);
                    saturated_intervals_lr.erase({l, r});
                    paint.add(l, r, -1);
                }
            };

            auto add = [&](int i) { // add to paint all intervals containing i
                if (i < 0 || i >= n) return;
                vector<array<int, 2>> fetch = findAllSaturatedIntervals(0, n, i);
                for (auto [l, r] : fetch) {
                    if (!saturated_intervals_lr.count({l, r})) {
                        saturated_intervals_lr.insert({l, r});
                        saturated_intervals_rl.insert({r, l});
                        paint.add(l, r, +1);
                    }
                }
            };

            erase(i);
            erase(i - 1);
            erase(i + 1);
            add(i);
            add(i - 1);
            add(i + 1);
        }
        if (type == 2) {
            int l, r;
            cin >> l >> r;
            l--;

            // assumes l = 0 and r = n (subtask 5)
            cout << paint.countZero(0, n) << '\n';
        }
    }
}
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 131 ms 15880 KB Output is correct
3 Correct 126 ms 15096 KB Output is correct
4 Correct 128 ms 15696 KB Output is correct
5 Correct 124 ms 14928 KB Output is correct
6 Correct 75 ms 11860 KB Output is correct
7 Correct 119 ms 10064 KB Output is correct
8 Correct 76 ms 11816 KB Output is correct
9 Correct 114 ms 10160 KB Output is correct
10 Correct 112 ms 11564 KB Output is correct
11 Correct 108 ms 11384 KB Output is correct
12 Correct 90 ms 11496 KB Output is correct
13 Correct 94 ms 11440 KB Output is correct
14 Correct 92 ms 14160 KB Output is correct
15 Correct 120 ms 13924 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 131 ms 15880 KB Output is correct
3 Correct 126 ms 15096 KB Output is correct
4 Correct 128 ms 15696 KB Output is correct
5 Correct 124 ms 14928 KB Output is correct
6 Correct 75 ms 11860 KB Output is correct
7 Correct 119 ms 10064 KB Output is correct
8 Correct 76 ms 11816 KB Output is correct
9 Correct 114 ms 10160 KB Output is correct
10 Correct 112 ms 11564 KB Output is correct
11 Correct 108 ms 11384 KB Output is correct
12 Correct 90 ms 11496 KB Output is correct
13 Correct 94 ms 11440 KB Output is correct
14 Correct 92 ms 14160 KB Output is correct
15 Correct 120 ms 13924 KB Output is correct
16 Incorrect 0 ms 344 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 131 ms 15880 KB Output is correct
3 Correct 126 ms 15096 KB Output is correct
4 Correct 128 ms 15696 KB Output is correct
5 Correct 124 ms 14928 KB Output is correct
6 Correct 75 ms 11860 KB Output is correct
7 Correct 119 ms 10064 KB Output is correct
8 Correct 76 ms 11816 KB Output is correct
9 Correct 114 ms 10160 KB Output is correct
10 Correct 112 ms 11564 KB Output is correct
11 Correct 108 ms 11384 KB Output is correct
12 Correct 90 ms 11496 KB Output is correct
13 Correct 94 ms 11440 KB Output is correct
14 Correct 92 ms 14160 KB Output is correct
15 Correct 120 ms 13924 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Incorrect 1981 ms 15980 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -