Submission #943624

# Submission time Handle Problem Language Result Execution time Memory
943624 2024-03-11T16:57:32 Z Pannda Fish 2 (JOI22_fish2) C++17
8 / 100
1677 ms 13464 KB
#include <bits/stdc++.h>
using namespace std;

struct Paint {
    struct Node {
        int mn, cnt;
        int lazy = 0;
        void add(int delta) {
            mn += delta;
            lazy += delta;
        }
        void merge(Node a, Node b) {
            mn = min(a.mn, b.mn);
            cnt = 0;
            if (a.mn == mn) cnt += a.cnt;
            if (b.mn == mn) cnt += b.cnt;
        }
    };

    int n;
    vector<Node> nodes;

    Paint(int n) : n(n), nodes(4 * n) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                nodes[idx].mn = 0;
                nodes[idx].cnt = 1;
            } else {
                int m = (l + r) >> 1;
                self(self, 2 * idx + 1, l, m);
                self(self, 2 * idx + 2, m, r);
                nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    void down(int idx) {
        nodes[2 * idx + 1].add(nodes[idx].lazy);
        nodes[2 * idx + 2].add(nodes[idx].lazy);
        nodes[idx].lazy = 0;
    }

    void add(int ql, int qr, int delta) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) return nodes[idx].add(delta);
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
            nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
        };
        dfs(dfs, 0, 0, n);
    }

    int countZero(int ql, int qr) {
        int fetch = 0;
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) {
                fetch += nodes[idx].mn == 0 ? nodes[idx].cnt : 0;
                return;
            }
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, r, m);
        };
        dfs(dfs, 0, 0, n);
        return fetch;
    }
};

struct SegmentWalk {
    int n;
    vector<int> mx;

    SegmentWalk(int n) : n(n), mx(4 * n, 0) {}

    void set(int i, int val) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                mx[idx] = val;
            } else {
                int m = (l + r) >> 1;
                if (i < m) self(self, 2 * idx + 1, l, m);
                else self(self, 2 * idx + 2, m, r);
                mx[idx] = max(mx[2 * idx + 1], mx[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    int walk(int ql, int qr, long long bound, bool request_leftmost) { // in [ql, qr), returns the leftmost (rightmost) position with value > 'bound'
        auto dfs = [&](auto self, int idx, int l, int r) -> int {
            if (r <= ql || qr <= l || mx[idx] <= bound) return -1;
            if (ql <= l && r <= qr) {
                while (l + 1 < r) {
                    int m = (l + r) >> 1;
                    if (request_leftmost) {
                        if (mx[2 * idx + 1] > bound) idx = 2 * idx + 1, r = m;
                        else idx = 2 * idx + 2, l = m;
                    } else {
                        if (mx[2 * idx + 2] > bound) idx = 2 * idx + 2, l = m;
                        else idx = 2 * idx + 1, r = m;
                    }
                }
                return l;
            }
            int m = (l + r) >> 1;
            if (request_leftmost) {
                int get = self(self, 2 * idx + 1, l, m);
                if (get != -1) return get;
                return self(self, 2 * idx + 2, m, r);
            } else {
                int get = self(self, 2 * idx + 2, m, r);
                if (get != -1) return get;
                return self(self, 2 * idx + 1, l, m);
            }
        };
        return dfs(dfs, 0, 0, n);
    }
};

struct Fenwick {
    int n;
    vector<long long> bit;

    Fenwick(int n) : n(n), bit(n + 1, 0) {}

    void add(int i, int delta) {
        for (i++; i <= n; i += i & -i) bit[i] += delta;
    }

    long long sum(int i) {
        long long res = 0;
        for (; i > 0; i -= i & -i) res += bit[i];
        return res;
    }

    long long sum(int l, int r) {
        return sum(r) - sum(l);
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n;
    cin >> n;

    vector<int> a(n);
    Fenwick fen(n);
    SegmentWalk segwalk(n);

    for (int i = 0; i < n; i++) {
        cin >> a[i];
        fen.add(i, a[i]);
        segwalk.set(i, a[i]);
    }

    auto findSaturatedInterval = [&](int ql, int qr, int &l, int &r, long long &sum) -> void { // O(log^2), find the tightest saturated interval (or [l, r)) containing the initial interval [l, r)
        while (ql < l || r < qr) {
            long long old_sum = sum;
            if (ql < l) {
                int p = segwalk.walk(ql, l, sum, false);
                if (p == -1) {
                    sum += fen.sum(ql, l);
                    l = ql;
                } else {
                    sum += fen.sum(p + 1, l);
                    l = p + 1;
                    if (sum >= a[p]) {
                        sum += a[p];
                        l = p;
                    }
                }
            }
            if (r < qr) {
                int p = segwalk.walk(r, qr, sum, true);
                if (p == -1) {
                    sum += fen.sum(r, qr);
                    r = n;
                } else {
                    sum += fen.sum(r, p);
                    r = p;
                    if (sum >= a[p]) {
                        sum += a[p];
                        r = p + 1;
                    }
                }
            }
            if (sum == old_sum) break;
        }
    };

    auto findAllSaturatedIntervals = [&](int ql, int qr, int i) -> vector<array<int, 2>> { // O(log^2), find all saturated intervals containing i
        vector<array<int, 2>> res;
        int l = i, r = i + 1;
        long long sum = a[i];
        while (true) {
            findSaturatedInterval(ql, qr, l, r, sum);
            if (l == ql && r == qr) break;
            res.push_back({l, r});
            if (l == ql || (r < qr && a[r] <= a[l - 1])) {
                sum += a[r];
                r = r + 1;
            } else {
                sum += a[l - 1];
                l = l - 1;
            }
        }
        return res;
    };

    Paint paint(n);
    set<array<int, 2>> saturated_intervals;
    for (int i = 0; i < n; i++) {
        int l = i, r = i + 1;
        long long sum = a[i];
        findSaturatedInterval(0, n, l, r, sum);
        if (array<int, 2>{l, r} != array<int, 2>{0, n}) {
            if (!saturated_intervals.count({l, r})) {
                saturated_intervals.insert({l, r});
                paint.add(l, r, +1);
            }
        }
    }

    int q;
    cin >> q;
    while (q--) {
        int type;
        cin >> type;
        if (type == 1) {
            int i, x;
            cin >> i >> x;
            i--;
            fen.add(i, -a[i] + x);
            a[i] = x;
            segwalk.set(i, x);

            auto erase = [&](int i) { // erase from paint all intervals containing i
                if (i < 0 || i >= n) return;
                while (!saturated_intervals.empty()) {
                    auto it = saturated_intervals.lower_bound(array<int, 2>{i + 1, -1});
                    if (it == saturated_intervals.begin()) break;
                    --it;
                    auto [l, r] = *it;
                    if (r <= i) break;
                    saturated_intervals.erase(it);
                    paint.add(l, r, -1);
                }
            };

            auto add = [&](int i) { // add to paint all intervals containing i
                if (i < 0 || i >= n) return;
                vector<array<int, 2>> fetch = findAllSaturatedIntervals(0, n, i);
                for (auto [l, r] : fetch) {
                    if (!saturated_intervals.count({l, r})) {
                        saturated_intervals.insert({l, r});
                        paint.add(l, r, +1);
                    }
                }
            };

            erase(i);
            erase(i - 1);
            erase(i + 1);
            add(i);
            add(i - 1);
            add(i + 1);
        }
        if (type == 2) {
            int l, r;
            cin >> l >> r;
            l--;

            // assumes l = 0 and r = n
            cout << paint.countZero(0, n) << '\n';
        }
    }
}
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 125 ms 12388 KB Output is correct
3 Correct 124 ms 11612 KB Output is correct
4 Correct 135 ms 12268 KB Output is correct
5 Correct 120 ms 11788 KB Output is correct
6 Correct 88 ms 10576 KB Output is correct
7 Correct 114 ms 9164 KB Output is correct
8 Correct 70 ms 10508 KB Output is correct
9 Correct 111 ms 9296 KB Output is correct
10 Correct 115 ms 10240 KB Output is correct
11 Correct 116 ms 9824 KB Output is correct
12 Correct 87 ms 9808 KB Output is correct
13 Correct 88 ms 9808 KB Output is correct
14 Correct 88 ms 11420 KB Output is correct
15 Correct 106 ms 11340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 125 ms 12388 KB Output is correct
3 Correct 124 ms 11612 KB Output is correct
4 Correct 135 ms 12268 KB Output is correct
5 Correct 120 ms 11788 KB Output is correct
6 Correct 88 ms 10576 KB Output is correct
7 Correct 114 ms 9164 KB Output is correct
8 Correct 70 ms 10508 KB Output is correct
9 Correct 111 ms 9296 KB Output is correct
10 Correct 115 ms 10240 KB Output is correct
11 Correct 116 ms 9824 KB Output is correct
12 Correct 87 ms 9808 KB Output is correct
13 Correct 88 ms 9808 KB Output is correct
14 Correct 88 ms 11420 KB Output is correct
15 Correct 106 ms 11340 KB Output is correct
16 Incorrect 0 ms 348 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 125 ms 12388 KB Output is correct
3 Correct 124 ms 11612 KB Output is correct
4 Correct 135 ms 12268 KB Output is correct
5 Correct 120 ms 11788 KB Output is correct
6 Correct 88 ms 10576 KB Output is correct
7 Correct 114 ms 9164 KB Output is correct
8 Correct 70 ms 10508 KB Output is correct
9 Correct 111 ms 9296 KB Output is correct
10 Correct 115 ms 10240 KB Output is correct
11 Correct 116 ms 9824 KB Output is correct
12 Correct 87 ms 9808 KB Output is correct
13 Correct 88 ms 9808 KB Output is correct
14 Correct 88 ms 11420 KB Output is correct
15 Correct 106 ms 11340 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Incorrect 1677 ms 13464 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -