# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
93975 |
2019-01-13T19:53:15 Z |
qkxwsm |
Gift (IZhO18_nicegift) |
C++14 |
|
1937 ms |
185520 KB |
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
struct custom_hash
{
template<class T>
unsigned long long operator()(T v) const
{
unsigned long long x = v;
x += FIXED_RANDOM;
// x += 11400714819323198485ull;
// x = (x ^ (x >> 30)) * 13787848793156543929ull;
x = (x ^ (x >> 27)) * 10723151780598845931ull;
return x ^ (x >> 31);
}
};
template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;
template<class T>
T randomize(T mod)
{
return (uniform_int_distribution<T>(0, mod - 1))(rng);
}
template<class T>
void readi(T &x)
{
x = 0;
bool negative = false;
char c = ' ';
while (c < '-')
{
c = getchar();
}
if (c == '-')
{
negative = true;
c = getchar();
}
while (c >= '0')
{
x = x * 10 + (c - '0');
c = getchar();
}
if (negative)
{
x = -x;
}
}
template<class T>
void printi(T output)
{
if (output == 0)
{
putchar('0');
return;
}
if (output < 0)
{
putchar('-');
output = -output;
}
int buf[20], n = 0;
while(output)
{
buf[n] = ((output % 10));
output /= 10;
n++;
}
for (n--; n >= 0; n--)
{
putchar(buf[n] + '0');
}
return;
}
template<class T>
void ckmin(T &a, T b)
{
a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
return (b ? gcd(b, a % b) : a);
}
#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define PB push_back
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << (x) << endl
#define SZ(x) ((int) ((x).size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) (x).begin(), (x).end()
const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-9;
#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 3000013
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;
int N, M, K;
pll arr[MAXN];
ll sum = 0;
vi ans[MAXN];
ll val[MAXN];
int32_t main()
{
ios_base::sync_with_stdio(0); cin.tie(0);
// cout << fixed << setprecision(10);
// cerr << fixed << setprecision(10);
// if (fopen("file.in", "r"))
// {
// freopen ("file.in", "r", stdin);
// freopen ("file.out", "w", stdout);
// }
cin >> N >> K;
FOR(i, 0, N)
{
cin >> arr[i].fi; arr[i].se = i;
sum += arr[i].fi;
}
sort(arr, arr + N);
if (sum % K || arr[N - 1].fi * K > sum)
{
cout << "-1\n";
return 0;
}
//at each turn, you need to preserve this property: biggestnumber * K is < sum
set<pll> s;
FOR(i, 0, N)
{
s.insert(arr[i]);
}
while(!s.empty())
{
vpl v;
FOR(i, 0, K)
{
v.PB(*s.rbegin());
s.erase(prev(s.end()));
}
val[M] = v.back().fi;
if (!s.empty())
{
ckmin(val[M], (sum - (s.rbegin() -> fi) * K) / K);
}
sum -= val[M] * K;
for (pll p : v)
{
ans[M].PB(p.se);
if (p.fi != val[M])
{
s.insert({p.fi - val[M], p.se});
}
}
M++;
}
cout << M << '\n';
FOR(i, 0, M)
{
cout << val[i];
FOR(j, 0, K)
{
cout << ' ' << ans[i][j] + 1;
}
cout << '\n';
}
// cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
return 0;
}
/* READ READ READ
* int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive
* reread the problem, try small cases
* note down possible sources of error as you go
* do smth instead of nothing
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
69 ms |
70776 KB |
n=4 |
2 |
Correct |
72 ms |
70776 KB |
n=3 |
3 |
Correct |
69 ms |
70788 KB |
n=3 |
4 |
Correct |
69 ms |
70748 KB |
n=4 |
5 |
Correct |
69 ms |
70748 KB |
n=4 |
6 |
Correct |
58 ms |
70780 KB |
n=2 |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
69 ms |
70776 KB |
n=4 |
2 |
Correct |
72 ms |
70776 KB |
n=3 |
3 |
Correct |
69 ms |
70788 KB |
n=3 |
4 |
Correct |
69 ms |
70748 KB |
n=4 |
5 |
Correct |
69 ms |
70748 KB |
n=4 |
6 |
Correct |
58 ms |
70780 KB |
n=2 |
7 |
Correct |
72 ms |
70824 KB |
n=5 |
8 |
Correct |
68 ms |
70760 KB |
n=8 |
9 |
Correct |
69 ms |
70776 KB |
n=14 |
10 |
Correct |
69 ms |
70776 KB |
n=11 |
11 |
Correct |
103 ms |
75436 KB |
n=50000 |
12 |
Correct |
88 ms |
75384 KB |
n=50000 |
13 |
Correct |
60 ms |
70776 KB |
n=10 |
14 |
Correct |
68 ms |
70856 KB |
n=685 |
15 |
Correct |
62 ms |
70904 KB |
n=623 |
16 |
Correct |
72 ms |
70904 KB |
n=973 |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
69 ms |
70776 KB |
n=4 |
2 |
Correct |
72 ms |
70776 KB |
n=3 |
3 |
Correct |
69 ms |
70788 KB |
n=3 |
4 |
Correct |
69 ms |
70748 KB |
n=4 |
5 |
Correct |
69 ms |
70748 KB |
n=4 |
6 |
Correct |
58 ms |
70780 KB |
n=2 |
7 |
Correct |
72 ms |
70824 KB |
n=5 |
8 |
Correct |
68 ms |
70760 KB |
n=8 |
9 |
Correct |
69 ms |
70776 KB |
n=14 |
10 |
Correct |
69 ms |
70776 KB |
n=11 |
11 |
Correct |
103 ms |
75436 KB |
n=50000 |
12 |
Correct |
88 ms |
75384 KB |
n=50000 |
13 |
Correct |
60 ms |
70776 KB |
n=10 |
14 |
Correct |
68 ms |
70856 KB |
n=685 |
15 |
Correct |
62 ms |
70904 KB |
n=623 |
16 |
Correct |
72 ms |
70904 KB |
n=973 |
17 |
Correct |
60 ms |
70968 KB |
n=989 |
18 |
Correct |
60 ms |
70876 KB |
n=563 |
19 |
Correct |
61 ms |
70904 KB |
n=592 |
20 |
Correct |
58 ms |
70904 KB |
n=938 |
21 |
Correct |
60 ms |
70904 KB |
n=747 |
22 |
Correct |
59 ms |
70876 KB |
n=991 |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
837 ms |
166664 KB |
n=1000000 |
2 |
Correct |
581 ms |
141432 KB |
n=666666 |
3 |
Correct |
359 ms |
111992 KB |
n=400000 |
4 |
Correct |
273 ms |
99832 KB |
n=285714 |
5 |
Correct |
83 ms |
72696 KB |
n=20000 |
6 |
Correct |
182 ms |
88956 KB |
n=181818 |
7 |
Correct |
74 ms |
71800 KB |
n=10000 |
8 |
Correct |
65 ms |
71484 KB |
n=6666 |
9 |
Correct |
71 ms |
71160 KB |
n=4000 |
10 |
Correct |
64 ms |
71032 KB |
n=2857 |
11 |
Correct |
59 ms |
71032 KB |
n=2000 |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
69 ms |
70776 KB |
n=4 |
2 |
Correct |
72 ms |
70776 KB |
n=3 |
3 |
Correct |
69 ms |
70788 KB |
n=3 |
4 |
Correct |
69 ms |
70748 KB |
n=4 |
5 |
Correct |
69 ms |
70748 KB |
n=4 |
6 |
Correct |
58 ms |
70780 KB |
n=2 |
7 |
Correct |
72 ms |
70824 KB |
n=5 |
8 |
Correct |
68 ms |
70760 KB |
n=8 |
9 |
Correct |
69 ms |
70776 KB |
n=14 |
10 |
Correct |
69 ms |
70776 KB |
n=11 |
11 |
Correct |
103 ms |
75436 KB |
n=50000 |
12 |
Correct |
88 ms |
75384 KB |
n=50000 |
13 |
Correct |
60 ms |
70776 KB |
n=10 |
14 |
Correct |
68 ms |
70856 KB |
n=685 |
15 |
Correct |
62 ms |
70904 KB |
n=623 |
16 |
Correct |
72 ms |
70904 KB |
n=973 |
17 |
Correct |
60 ms |
70968 KB |
n=989 |
18 |
Correct |
60 ms |
70876 KB |
n=563 |
19 |
Correct |
61 ms |
70904 KB |
n=592 |
20 |
Correct |
58 ms |
70904 KB |
n=938 |
21 |
Correct |
60 ms |
70904 KB |
n=747 |
22 |
Correct |
59 ms |
70876 KB |
n=991 |
23 |
Correct |
837 ms |
166664 KB |
n=1000000 |
24 |
Correct |
581 ms |
141432 KB |
n=666666 |
25 |
Correct |
359 ms |
111992 KB |
n=400000 |
26 |
Correct |
273 ms |
99832 KB |
n=285714 |
27 |
Correct |
83 ms |
72696 KB |
n=20000 |
28 |
Correct |
182 ms |
88956 KB |
n=181818 |
29 |
Correct |
74 ms |
71800 KB |
n=10000 |
30 |
Correct |
65 ms |
71484 KB |
n=6666 |
31 |
Correct |
71 ms |
71160 KB |
n=4000 |
32 |
Correct |
64 ms |
71032 KB |
n=2857 |
33 |
Correct |
59 ms |
71032 KB |
n=2000 |
34 |
Correct |
80 ms |
73208 KB |
n=23514 |
35 |
Correct |
78 ms |
73208 KB |
n=23514 |
36 |
Correct |
69 ms |
70904 KB |
n=940 |
37 |
Correct |
69 ms |
70916 KB |
n=2 |
38 |
Correct |
133 ms |
79864 KB |
n=100000 |
39 |
Correct |
137 ms |
79992 KB |
n=100000 |
40 |
Correct |
71 ms |
70748 KB |
n=10 |
41 |
Correct |
68 ms |
70776 KB |
n=100 |
42 |
Correct |
74 ms |
71132 KB |
n=1000 |
43 |
Correct |
1131 ms |
175864 KB |
n=1000000 |
44 |
Correct |
1937 ms |
185520 KB |
n=1000000 |
45 |
Correct |
1540 ms |
145880 KB |
n=666666 |
46 |
Correct |
875 ms |
114780 KB |
n=400000 |
47 |
Correct |
84 ms |
71544 KB |
n=2336 |
48 |
Correct |
922 ms |
113512 KB |
n=285714 |
49 |
Correct |
833 ms |
107356 KB |
n=181818 |
50 |
Correct |
114 ms |
75256 KB |
n=40000 |
51 |
Correct |
89 ms |
72952 KB |
n=20000 |
52 |
Correct |
79 ms |
71900 KB |
n=10000 |
53 |
Correct |
142 ms |
74504 KB |
n=6666 |
54 |
Correct |
77 ms |
71452 KB |
n=4000 |
55 |
Correct |
353 ms |
83960 KB |
n=2857 |
56 |
Correct |
72 ms |
71104 KB |
n=2000 |