#include<bits/stdc++.h>
using namespace std;
using int64 = int64_t;
#define REP(i, n) for(int i = 0, _n = n; i < _n; ++i)
#define REPD(i, n) for(int i = n - 1; i >= 0; --i)
#define FOR(i, l, r) for(int i = l, _r = r; i <= _r; ++i)
#define FORD(i, r, l) for(int i = r, _l = l; i >= _l; --i)
#define left __left
#define right __right
#define prev __prev
#define next __next
#define div __div
#define pb push_back
#define pf push_front
#define sz(v) (int)v.size()
#define range(v) begin(v), end(v)
#define compact(v) v.erase(unique(range(v)), end(v))
#define debug(v) "[" #v " = " << (v) << "]"
template<typename T>
bool minimize(T& a, const T& b){
if(a > b){
a = b;
return true;
}
return false;
}
template<typename T>
bool maximize(T& a, const T& b){
if(a < b){
a = b;
return true;
}
return false;
}
template<int dimension, class T>
struct vec : public vector<vec<dimension - 1, T>> {
static_assert(dimension > 0, "Dimension must be positive !\n");
template<typename... Args>
vec(int n = 0, Args... args) : vector<vec<dimension - 1, T>>(n, vec<dimension - 1, T>(args...)) {}
};
template<class T>
struct vec<1, T> : public vector<T> {
vec(int n = 0, T val = T()) : vector<T>(n, val) {}
};
struct ReachabilityTree{
int number_nodes, timer_dfs;
vector<int> tin, tout, order, lab;
vector<vector<int>> adj;
ReachabilityTree(int n, int m){
number_nodes = n;
timer_dfs = -1;
tin = vector<int>(n + m);
tout = vector<int>(n + m);
lab = vector<int>(n + m, -1);
adj = vector<vector<int>>(n + m);
order = vector<int>();
}
int find_root(int u){
return lab[u] < 0 ? u : (lab[u] = find_root(lab[u]));
}
void unite(int u, int v){
u = find_root(u);
v = find_root(v);
adj[number_nodes].pb(u);
if(u != v) adj[number_nodes].pb(v);
lab[u] = number_nodes; lab[v] = number_nodes;
++number_nodes;
}
void dfs(int u){
tin[u] = ++timer_dfs; order.pb(u);
for(int v : adj[u]){
dfs(v);
}
tout[u] = timer_dfs;
}
void process(){
dfs(number_nodes - 1);
}
};
struct Fenwick{
vector<int> bit;
Fenwick(int n) : bit(n + 1, 0) {}
void update(int id, int val){
for(; id < sz(bit); id += id & (-id)){
bit[id] += val;
}
}
int query(int id){
int sum = 0;
for(; id > 0; id -= id & (-id)){
sum += bit[id];
}
return sum;
}
int get_range(int l, int r){
return query(r) - query(l - 1);
}
};
vector<int> check_validity(int N, vector<int> X, vector<int> Y, vector<int> S, vector<int> T, vector<int> L, vector<int> R){
int n = N;
int m = sz(X);
int q = sz(S);
vec<2, int> adj(n);
REP(i, m){
int u = X[i], v = Y[i];
adj[u].pb(v);
adj[v].pb(u);
}
ReachabilityTree from(n, m), until(n, m);
vector<vector<int>> sweep_from(n), sweep_until(n);
vector<int> query_from(q), query_until(q);
REP(i, q){
sweep_from[L[i]].pb(i);
sweep_until[R[i]].pb(i);
}
REPD(i, n){
for(int j : adj[i]){
if(j >= i){
from.unite(i, j);
}
}
for(int id : sweep_from[i]){
query_from[id] = from.find_root(S[id]);
}
}
REP(i, n){
for(int j : adj[i]){
if(j <= i){
until.unite(i, j);
}
}
for(int id : sweep_until[i]){
query_until[id] = until.find_root(T[id]);
}
}
from.process();
cout << '\n';
until.process();
vector<int> left(q), right(q);
vector<vector<pair<int, int>>> sweep(n + m);
REP(i, q){
int l1 = from.tin[query_from[i]];
int r1 = from.tout[query_from[i]];
left[i] = until.tin[query_until[i]];
right[i] = until.tout[query_until[i]];
if(l1 > 0) sweep[l1 - 1].pb(make_pair(i, -1));
sweep[r1].pb(make_pair(i, +1));
}
auto is_node = [&](int u){
return -1 < u && u < n;
};
vector<int> occur(n);
REP(i, sz(from.order)){
int u = from.order[i];
if(is_node(u)){
occur[u] = i;
}
}
vector<int> ans(q);
Fenwick BIT(n + m);
REP(i, n + m){
int u = until.order[i];
if(is_node(u)){
BIT.update(occur[u] + 1, 1);
}
for(const auto& iter : sweep[i]){
int id = iter.first, sign = iter.second;
ans[id] += sign * BIT.get_range(left[id] + 1, right[id] + 1);
}
}
REP(i, q){
minimize(ans[i], 1);
}
cout << '\n';
return ans;
}
//#define Zero_OP //turn off when submitting
#ifdef Zero_OP
void init(void);
void process(void);
int main(){
ios_base::sync_with_stdio(0); cin.tie(0);
int T = 1; //cin >> T;
while(T--) {
init();
process();
}
return 0;
}
void init(){
}
void process(){
vector<int> ans = check_validity(6, {5, 1, 1, 3, 3, 5}, {1, 2, 3, 4, 0, 2},
{4, 4, 5}, {2, 2, 4}, {1, 2, 3}, {2, 2, 4});
REP(i, sz(ans)){
cout << ans[i] << ' ';
}
cout << '\n';
}
#endif
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
434 ms |
110400 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |