# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
938957 |
2024-03-06T01:32:24 Z |
LOLOLO |
Werewolf (IOI18_werewolf) |
C++17 |
|
534 ms |
136360 KB |
//#include "werewolf.h"
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define f first
#define s second
#define pb push_back
#define ep emplace
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define uniquev(v) sort(all(v)), (v).resize(unique(all(v)) - (v).begin())
#define mem(f,x) memset(f , x , sizeof(f))
#define sz(x) (int)(x).size()
#define __lcm(a, b) (1ll * ((a) / __gcd((a), (b))) * (b))
#define mxx *max_element
#define mnn *min_element
#define cntbit(x) __builtin_popcountll(x)
#define len(x) (int)(x.length())
const int N = 2e5 + 100, M = 1e7 + 10;
vector <pair <int, int>> edge[N], inc[N], dcs[N], edge2[N];
int idl[N], idr[N], l1[N], r1[N], l2[N], r2[N], id[N * 5], pos[N], L[N], R[N], val[N];
ll f[N];
void upd(int i, int x) {
for (; i < N; i += i & (-i))
f[i] += x;
}
int get(int i) {
int s = 0;
for (; i; i -= i & (-i))
s += f[i];
return s;
}
int range(int l, int r) {
return get(r) - get(l - 1);
}
vector < vector <int>> save[N];
vector <int> solve(vector <int> &p, vector <int> &q, int num) {
int n = sz(q) - 1;
for (int i = 1; i <= n; i++)
pos[p[i]] = i;
int cnt = 0;
for (int i = 0; i < num; i++) {
save[r2[i]].pb({l1[i], r1[i], cnt});
L[i] = cnt;
cnt++;
save[l2[i] - 1].pb({l1[i], r1[i], cnt});
R[i] = cnt;
cnt++;
}
for (int i = 1; i <= n; i++) {
int x = q[i];
upd(pos[x], 1);
for (auto x : save[i]) {
val[x[2]] = range(x[0], x[1]);
}
}
vector <int> ans;
for (int i = 0; i < num; i++) {
int v = val[R[i]] - val[L[i]];
if (v) {
ans.pb(1);
} else {
ans.pb(0);
}
}
return ans;
}
struct kruskal_tree{
int n;
vector <int> par, arr, in, ou;
vector < vector <int>> ed;
void dfs(int u) {
bool is = 0;
in[u] = sz(arr);
for (auto x : ed[u]) {
dfs(x);
is = 1;
}
if (is == 0) {
arr.pb(u);
}
ou[u] = sz(arr) - 1;
}
void assign(int N) {
arr.pb(0);
n = N;
par.assign(2 * n + 10, 0);
in.assign(2 * n + 10, 0);
ou.assign(2 * n + 10, 0);
ed.resize(2 * n + 10);
for (int i = 1; i <= n * 2; i++)
par[i] = i;
}
int find(int u) {
return par[u] == u ? u : find(par[u]);
}
void unite(int a, int b) {
a = find(a), b = find(b);
if (a == b)
return;
n++;
par[a] = par[b] = par[n] = n;
ed[n].pb(a);
ed[n].pb(b);
}
};
vector <int> check_validity(int N, vector <int> x, vector <int> y, vector <int> s, vector <int> e, vector <int> l, vector <int> r) {
int m = sz(x);
int n = N;
for (int i = 0; i < m; i++) {
x[i]++, y[i]++;
edge[max(x[i], y[i])].pb({x[i], y[i]});
edge2[min(x[i], y[i])].pb({x[i], y[i]});
}
kruskal_tree A, B;
A.assign(n);
B.assign(n);
int q = sz(s);
for (int i = 0; i < q; i++) {
l[i]++;
r[i]++;
s[i]++;
e[i]++;
inc[r[i]].pb({e[i], i});
dcs[l[i]].pb({s[i], i});
}
for (int i = 1; i <= n; i++) {
for (auto x : edge[i]) {
A.unite(x.f, x.s);
}
for (auto x : inc[i]) {
idl[x.s] = A.find(x.f);
}
}
for (int i = n; i >= 1; i--) {
for (auto x : edge2[i]) {
B.unite(x.f, x.s);
}
for (auto x : dcs[i]) {
idr[x.s] = B.find(x.f);
}
}
A.dfs(A.n);
B.dfs(B.n);
for (int i = 0; i < q; i++) {
l1[i] = A.in[idl[i]];
r1[i] = A.ou[idl[i]];
l2[i] = B.in[idr[i]];
r2[i] = B.ou[idr[i]];
//cout << l1[i] << ' ' << r1[i] << ' ' << l2[i] << ' ' << r2[i] << '\n';
}
return solve(A.arr, B.arr, q);
}
/*int main() {
auto v = check_validity(6, {5, 1, 1, 3, 3, 5}, {1, 2, 3, 4, 0, 2}, {4, 4, 5}, {2, 2, 4}, {1, 2, 3}, {2, 2, 4});
for (auto x : v)
cout << x << " ";
cout << '\n';
}*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
35164 KB |
Output is correct |
2 |
Correct |
7 ms |
35164 KB |
Output is correct |
3 |
Correct |
8 ms |
35184 KB |
Output is correct |
4 |
Correct |
9 ms |
35188 KB |
Output is correct |
5 |
Correct |
7 ms |
35164 KB |
Output is correct |
6 |
Correct |
8 ms |
35248 KB |
Output is correct |
7 |
Correct |
9 ms |
35164 KB |
Output is correct |
8 |
Correct |
7 ms |
35164 KB |
Output is correct |
9 |
Correct |
8 ms |
35164 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
35164 KB |
Output is correct |
2 |
Correct |
7 ms |
35164 KB |
Output is correct |
3 |
Correct |
8 ms |
35184 KB |
Output is correct |
4 |
Correct |
9 ms |
35188 KB |
Output is correct |
5 |
Correct |
7 ms |
35164 KB |
Output is correct |
6 |
Correct |
8 ms |
35248 KB |
Output is correct |
7 |
Correct |
9 ms |
35164 KB |
Output is correct |
8 |
Correct |
7 ms |
35164 KB |
Output is correct |
9 |
Correct |
8 ms |
35164 KB |
Output is correct |
10 |
Correct |
17 ms |
36700 KB |
Output is correct |
11 |
Correct |
14 ms |
36696 KB |
Output is correct |
12 |
Correct |
12 ms |
36696 KB |
Output is correct |
13 |
Correct |
21 ms |
36692 KB |
Output is correct |
14 |
Correct |
21 ms |
36700 KB |
Output is correct |
15 |
Correct |
23 ms |
36700 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
534 ms |
136360 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
35164 KB |
Output is correct |
2 |
Correct |
7 ms |
35164 KB |
Output is correct |
3 |
Correct |
8 ms |
35184 KB |
Output is correct |
4 |
Correct |
9 ms |
35188 KB |
Output is correct |
5 |
Correct |
7 ms |
35164 KB |
Output is correct |
6 |
Correct |
8 ms |
35248 KB |
Output is correct |
7 |
Correct |
9 ms |
35164 KB |
Output is correct |
8 |
Correct |
7 ms |
35164 KB |
Output is correct |
9 |
Correct |
8 ms |
35164 KB |
Output is correct |
10 |
Correct |
17 ms |
36700 KB |
Output is correct |
11 |
Correct |
14 ms |
36696 KB |
Output is correct |
12 |
Correct |
12 ms |
36696 KB |
Output is correct |
13 |
Correct |
21 ms |
36692 KB |
Output is correct |
14 |
Correct |
21 ms |
36700 KB |
Output is correct |
15 |
Correct |
23 ms |
36700 KB |
Output is correct |
16 |
Incorrect |
534 ms |
136360 KB |
Output isn't correct |
17 |
Halted |
0 ms |
0 KB |
- |