Submission #937477

# Submission time Handle Problem Language Result Execution time Memory
937477 2024-03-04T06:37:48 Z gaga999 Palindromi (COCI22_palindromi) C++17
110 / 110
224 ms 175416 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

const int N = 1e5 + 5;

struct TR
{
    vector<int> len, kp, bk[2], to[2];
    deque<int> dq;
    int cnt, ln, rn, sz;
    TR() : cnt(2), sz(0)
    {
        len = {-1, 0}, ln = rn = 1; // 0
        kp = bk[0] = bk[1] = to[0] = to[1] = {0, 0};
    }
    inline void add(int u, int vl)
    {
        len.pb(len[u] + 2);
        to[0].pb(0), to[1].pb(0);
        kp.pb(u ? to[vl][bk[vl][u]] : 1);
        to[vl][u] = cnt++;
    }
    inline void addr(int vl)
    {
        dq.pb(vl);
        int u;
        if (len[rn] < sz && dq[sz - len[rn] - 1] == vl)
            u = rn;
        else
            u = bk[vl][rn];
        if (!to[vl][u])
        {
            add(u, vl);
            int tp = dq[sz - len[kp.back()]];
            bk[tp].pb(kp.back());
            bk[tp ^ 1].pb(bk[tp ^ 1][kp.back()]);
        }
        rn = to[vl][u];
        if (len[rn] == ++sz)
            ln = rn;
    }
    inline void addl(int vl)
    {
        int u;
        if (len[ln] < sz && dq[len[ln]] == vl)
            u = ln;
        else
            u = bk[vl][ln];
        dq.push_front(vl);
        if (!to[vl][u])
        {
            add(u, vl);
            int tp = dq[len[kp.back()]];
            bk[tp].pb(kp.back());
            bk[tp ^ 1].pb(bk[tp ^ 1][kp.back()]);
        }
        ln = to[vl][u];
        if (len[ln] == ++sz)
            rn = ln;
    }
} tr[N];

char s[N];
int ds[N];

int f(int x)
{
    return ds[x] == x ? x : ds[x] = f(ds[x]);
}

signed main()
{
    int n, x, y;
    scanf("%d%s", &n, s + 1);
    iota(ds + 1, ds + n + 1, 1);
    for (int i = 1; i <= n; i++)
        tr[i].addl(s[i] - '0');
    for (int i = 1; i < n; i++)
    {
        scanf("%d%d", &x, &y);
        x = f(x), y = f(y);
        if (tr[x].sz > tr[y].sz)
        {
            for (int p = 0; p < tr[y].sz; p++)
                tr[x].addr(tr[y].dq[p]);
            printf("%d\n", tr[ds[y] = x].cnt - 2);
        }
        else
        {
            for (int p = tr[x].sz - 1; p >= 0; p--)
                tr[y].addl(tr[x].dq[p]);
            printf("%d\n", tr[ds[x] = y].cnt - 2);
        }
    }
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:182:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  182 |     scanf("%d%s", &n, s + 1);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~
Main.cpp:188:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  188 |         scanf("%d%d", &x, &y);
      |         ~~~~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 59 ms 102480 KB Output is correct
2 Correct 83 ms 102552 KB Output is correct
3 Correct 82 ms 102480 KB Output is correct
4 Correct 81 ms 102484 KB Output is correct
5 Correct 81 ms 102460 KB Output is correct
6 Correct 82 ms 102484 KB Output is correct
7 Correct 60 ms 102484 KB Output is correct
8 Correct 80 ms 102548 KB Output is correct
9 Correct 63 ms 102484 KB Output is correct
10 Correct 97 ms 102544 KB Output is correct
11 Correct 61 ms 102480 KB Output is correct
12 Correct 61 ms 102480 KB Output is correct
13 Correct 61 ms 102488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 59 ms 102480 KB Output is correct
2 Correct 83 ms 102552 KB Output is correct
3 Correct 82 ms 102480 KB Output is correct
4 Correct 81 ms 102484 KB Output is correct
5 Correct 81 ms 102460 KB Output is correct
6 Correct 82 ms 102484 KB Output is correct
7 Correct 60 ms 102484 KB Output is correct
8 Correct 80 ms 102548 KB Output is correct
9 Correct 63 ms 102484 KB Output is correct
10 Correct 97 ms 102544 KB Output is correct
11 Correct 61 ms 102480 KB Output is correct
12 Correct 61 ms 102480 KB Output is correct
13 Correct 61 ms 102488 KB Output is correct
14 Correct 63 ms 102484 KB Output is correct
15 Correct 85 ms 102996 KB Output is correct
16 Correct 85 ms 102992 KB Output is correct
17 Correct 94 ms 103084 KB Output is correct
18 Correct 81 ms 102916 KB Output is correct
19 Correct 91 ms 103176 KB Output is correct
20 Correct 81 ms 102992 KB Output is correct
21 Correct 83 ms 103000 KB Output is correct
22 Correct 82 ms 102796 KB Output is correct
23 Correct 83 ms 102892 KB Output is correct
24 Correct 82 ms 103028 KB Output is correct
25 Correct 85 ms 102992 KB Output is correct
26 Correct 83 ms 102992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 159 ms 153096 KB Output is correct
2 Correct 150 ms 154368 KB Output is correct
3 Correct 151 ms 152280 KB Output is correct
4 Correct 149 ms 155192 KB Output is correct
5 Correct 163 ms 154960 KB Output is correct
6 Correct 146 ms 153400 KB Output is correct
7 Correct 157 ms 154524 KB Output is correct
8 Correct 144 ms 152632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 59 ms 102480 KB Output is correct
2 Correct 83 ms 102552 KB Output is correct
3 Correct 82 ms 102480 KB Output is correct
4 Correct 81 ms 102484 KB Output is correct
5 Correct 81 ms 102460 KB Output is correct
6 Correct 82 ms 102484 KB Output is correct
7 Correct 60 ms 102484 KB Output is correct
8 Correct 80 ms 102548 KB Output is correct
9 Correct 63 ms 102484 KB Output is correct
10 Correct 97 ms 102544 KB Output is correct
11 Correct 61 ms 102480 KB Output is correct
12 Correct 61 ms 102480 KB Output is correct
13 Correct 61 ms 102488 KB Output is correct
14 Correct 63 ms 102484 KB Output is correct
15 Correct 85 ms 102996 KB Output is correct
16 Correct 85 ms 102992 KB Output is correct
17 Correct 94 ms 103084 KB Output is correct
18 Correct 81 ms 102916 KB Output is correct
19 Correct 91 ms 103176 KB Output is correct
20 Correct 81 ms 102992 KB Output is correct
21 Correct 83 ms 103000 KB Output is correct
22 Correct 82 ms 102796 KB Output is correct
23 Correct 83 ms 102892 KB Output is correct
24 Correct 82 ms 103028 KB Output is correct
25 Correct 85 ms 102992 KB Output is correct
26 Correct 83 ms 102992 KB Output is correct
27 Correct 159 ms 153096 KB Output is correct
28 Correct 150 ms 154368 KB Output is correct
29 Correct 151 ms 152280 KB Output is correct
30 Correct 149 ms 155192 KB Output is correct
31 Correct 163 ms 154960 KB Output is correct
32 Correct 146 ms 153400 KB Output is correct
33 Correct 157 ms 154524 KB Output is correct
34 Correct 144 ms 152632 KB Output is correct
35 Correct 60 ms 102244 KB Output is correct
36 Correct 213 ms 159772 KB Output is correct
37 Correct 210 ms 156064 KB Output is correct
38 Correct 224 ms 160832 KB Output is correct
39 Correct 224 ms 159316 KB Output is correct
40 Correct 173 ms 153448 KB Output is correct
41 Correct 186 ms 154700 KB Output is correct
42 Correct 144 ms 152628 KB Output is correct
43 Correct 162 ms 154456 KB Output is correct
44 Correct 151 ms 152256 KB Output is correct
45 Correct 155 ms 153940 KB Output is correct
46 Correct 206 ms 175416 KB Output is correct
47 Correct 198 ms 162232 KB Output is correct