Submission #936432

# Submission time Handle Problem Language Result Execution time Memory
936432 2024-03-01T19:20:53 Z EJIC_B_KEDAX Comparing Plants (IOI20_plants) C++17
100 / 100
2179 ms 205180 KB
#include <bits/stdc++.h>
#include "plants.h"

#define x first
#define y second

using ll = long long;
 
using namespace std;
 
const int LG = 18, N = 1 << LG;
int st1[2 * N], st2[2 * N], lz1[2 * N], lz2[2 * N], timer = 1, fndl[2 * N], fndl2[2 * N], used3[N], level[N], kk, nn;
pair<int, int> fnd[2 * N], fnd2[2 * N];
pair<int, ll> binupr[LG][N], binupl[LG][N];
vector<pair<int, int>> mst[2 * N];



void push(int i, int st[], int lz[]) {
	if (lz[i] != -1) {
		st[2 * i + 1] = lz[i];
		st[2 * i + 2] = lz[i];
		lz[2 * i + 1] = lz[i];
		lz[2 * i + 2] = lz[i];
		lz[i] = -1;
	}
}

void set_seg(int l, int r, int x, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		st[i] = x;
		lz[i] = x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i, st, lz);
	set_seg(l, r, x, st, lz, l1, (l1 + r1) / 2, 2 * i + 1);
	set_seg(l, r, x, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	st[i] = min(st[2 * i + 1], st[2 * i + 2]);
}

int get(int ind, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 == ind && r1 == ind) {
		return st[i];
	}
	if (l1 > ind || r1 < ind) {
		return INT32_MAX;
	}
	push(i, st, lz);
	return min(get(ind, st, lz, l1, (l1 + r1) / 2, 2 * i + 1), get(ind, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void push(int i) {
	fnd[2 * i + 1].x += fndl[i];
	fnd[2 * i + 2].x += fndl[i];
	fndl[2 * i + 1] += fndl[i];
	fndl[2 * i + 2] += fndl[i];
	fndl[i] = 0;
}

void push1(int i) {
	fnd2[2 * i + 1].x += fndl2[i];
	fnd2[2 * i + 2].x += fndl2[i];
	fndl2[2 * i + 1] += fndl2[i];
	fndl2[2 * i + 2] += fndl2[i];
	fndl2[i] = 0;
}

void add_seg(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd[i].x += x;
		fndl[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i);
	add_seg(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd[i] = min(fnd[2 * i + 1], fnd[2 * i + 2]);
}

pair<int, int> get_min(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push(i);
	return min(get_min(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void add_seg1(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd2[i].x += x;
		fndl2[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push1(i);
	add_seg1(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg1(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd2[i] = min(fnd2[2 * i + 1], fnd2[2 * i + 2]);
}

pair<int, int> get_min1(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd2[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push1(i);
	return min(get_min1(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min1(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

pair<int, int> find_max(int i, int v) {
	int l = -1, r = mst[i].size();
	while (r - l > 1) {
		int m = (r + l) / 2;
		if (mst[i][m].x >= v) {
			r = m;
		} else {
			l = m;
		}
	}
	return l == -1 ? make_pair(-1, N) : mst[i][l];
}

pair<int, int> get_max(int l, int r, int v) {
	l += N - 1;
	r += N - 1;
	pair<int, int> res = {-1, -1};
	while (l <= r) {
		if (~l & 1) {
			res = max(res, find_max(l++, v));
		}
		if (r & 1) {
			res = max(res, find_max(r--, v));
		}
		l = (l - 1) / 2;
		r = (r - 1) / 2;
	}
	return res;
}

void mrg(int to, int a, int b) {
	mst[to].resize(mst[a].size() + mst[b].size());
	std::merge(mst[a].begin(), mst[a].end(), mst[b].begin(), mst[b].end(), mst[to].begin());
}

void init(int k, vector<int> r) {
	kk = k;
    int n = r.size();
    nn = n;
    int ok = 0;
    for (int i = 0; i < 2 * N; i++) {
    	st1[i] = -1;
    	st2[i] = -1;
    	lz1[i] = -1;
    	lz2[i] = -1;
    }
    for (int i = 0; i < N; i++) {
    	fnd[i + N - 1].y = i;
    	fnd2[i + N - 1].y = i;
    	level[i] = n;
    }
    for (int i = 0; i < n; i++) {
    	add_seg(i, i, r[i]);
    	add_seg1(i, i, r[i]);
		if (r[i] == 0) {
			used3[i] = 1;
			if (i + k > n) {
				add_seg(i + 1, n - 1, 1);
				add_seg(0, i + k - n - 1, 1);
			} else {
				add_seg(i + 1, i + k - 1, 1);
			}
		}
    }
    while (ok < n) {
    	auto [value, i] = get_min(0, n - 1);
    	// cout << i << '\n';
    	// for (int i = 0; i < n; i++) {
    	// 	cout << get_min(i, i).x << ' ';
    	// }
    	// cout << '\n';
    	if (value) {
    		// cout << value << ' ' << ok << '\n';
    		exit(1);
    	}
    	int tmp1 = get(i, st1, lz1), tmp2 = get(i, st2, lz2);
    	if (tmp1 != -1) {
    		level[i] = min(level[i], level[tmp1] - 1);
    	}
    	if (tmp2 != -1) {
    		level[i] = min(level[i], level[tmp2] - 1);
    	}
    	vector<int> z;
        if (i + k - 1 < n) {
    		set_seg(i + 1, i + k - 1, i, st2, lz2);
    		add_seg(i + 1, i + k - 1, -1);
    	} else {
    		set_seg(i + 1, n - 1, i, st2, lz2);
    		set_seg(0, i + k - 1 - n, i, st2, lz2);
    		add_seg(i + 1, n - 1, -1);
    		add_seg(0, i + k - 1 - n, -1);
    	}
    	if (i >= k - 1) {
    		add_seg(i - k + 1, i - 1, -1);
    		add_seg1(i - k + 1, i - 1, -1);
    		int left = i - k + 1;
    		while (left <= i - 1 && !get_min1(left, i - 1).x) {
    			z.push_back(get_min1(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		set_seg(i - k + 1, i - 1, i, st1, lz1);
    	} else {
    		add_seg(0, i - 1, -1);
    		add_seg1(0, i - 1, -1);
    		set_seg(0, i - 1, i, st1, lz1);
    		add_seg(n + 1 - k + i, n - 1, -1);
    		add_seg1(n + 1 - k + i, n - 1, -1);
    		set_seg(n + 1 - k + i, n - 1, i, st1, lz1);
    		int left = 0;
    		while (left <= i - 1 && !get_min1(left, i - 1).x) {
    			z.push_back(get_min1(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		left = n + 1 - k + i;
    		while (left <= n - 1 && !get_min1(left, n - 1).x) {
    			z.push_back(get_min1(left, n - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    	}
    	for (int j : z) {
    		if (!used3[j]) {
				if (j + k > n) {
					add_seg(j + 1, n - 1, 1);
					add_seg(0, j + k - n - 1, 1);
				} else {
					add_seg(j + 1, j + k - 1, 1);
				}
				used3[j] = 1;
			}
		}
        add_seg(i, i, INT32_MAX / 2);
        add_seg1(i, i, INT32_MAX / 2);
    	ok++;
    }
    // for (int i = 0; i < n; i++) {
    // 	cout << level[i] << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	mst[N - 1 + i].emplace_back(level[i], i);
    // }
    // for (int i = N - 2; i >= 0; i--) {
    // 	mrg(i, 2 * i + 1, 2 * i + 2);
    // }
    set<pair<int, int>> st1;
    set<pair<int, int>> st2;
    for (int i = n - k + 1; i < n; i++) {
    	st1.emplace(-level[i], i);
    }
    for (int i = 1; i < k; i++) {
    	st2.emplace(-level[i], i);
    }
    for (int i = 0; i < n; i++) {
    	auto lb1 = st1.lower_bound({-level[i], N});
    	if (lb1 == st1.end()) {
    		binupl[0][i].x = i;
    	} else {
    		binupl[0][i].x = (*lb1).y;
    	}
    	st1.erase({-level[(i - k + 1 + n) % n], (i - k + 1 + n) % n});
    	st1.emplace(-level[i], i);
    	// if (i >= k - 1) {
    	// 	binupl[0][i].x = get_max(i - k + 1, i - 1, level[i]).y;
    	// } else {
    	// 	binupl[0][i].x = max(get_max(0, i - 1, level[i]), get_max(n + i - k + 1, n - 1, level[i])).y;
    	// }
    	// if (binupl[0][i].x == N) {
    	// 	binupl[0][i].x = i;
    	// }
    	binupl[0][i].y = i - binupl[0][i].x;
    	if (binupl[0][i].y < 0) {
    		binupl[0][i].y += n;
    	}
    	auto lb2 = st2.lower_bound({-level[i], N});
    	if (lb2 == st2.end()) {
    		binupr[0][i].x = i;
    	} else {
    		binupr[0][i].x = (*lb2).y;
    	}
    	st2.erase({-level[i + 1], i + 1});
    	st2.emplace(-level[(i + k) % n], (i + k) % n);
    	// if (i + k - 1 < n) {
    	// 	binupr[0][i].x = get_max(i + 1, i + k - 1, level[i]).y;
    	// } else {
    	// 	binupr[0][i].x = max(get_max(i + 1, n - 1, level[i]), get_max(0, i + k - 1 - n, level[i])).y;
    	// }
    	// if (binupr[0][i].x == N) {
    	// 	binupr[0][i].x = i;
    	// }
    	binupr[0][i].y = binupr[0][i].x - i;
    	if (binupr[0][i].y < 0) {
    		binupr[0][i].y += n;
    	}
    }
    for (int l = 1; l < LG; l++) {
    	for (int i = 0; i < n; i++) {
    		binupl[l][i].x = binupl[l - 1][binupl[l - 1][i].x].x;
    		binupr[l][i].x = binupr[l - 1][binupr[l - 1][i].x].x;
    		binupl[l][i].y = binupl[l - 1][binupl[l - 1][i].x].y + binupl[l - 1][i].y;
    		binupr[l][i].y = binupr[l - 1][binupr[l - 1][i].x].y + binupr[l - 1][i].y;
    	}
    }
    for (int i = 0; i < n; i++) {
    	for (int l = 0; l < 1; l++) {
    		assert(binupl[l][i].y < n);
    		assert(binupr[l][i].y < n);
    	}
    }
}

bool try_compare(int x, int y) {
	ll dist = x - y;
	int nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (dist <= 0) {
		// cout << "! " << nw << '\n';
		return true;
	} 
	for (int i = LG - 1; i >= 0; i--) {
		if (binupl[i][nw].y < dist) {
			dist -= binupl[i][nw].y;
			nw = binupl[i][nw].x;
		}
	}
	assert(dist > 0);
	dist -= binupl[0][nw].y;
	nw = binupl[0][nw].x;
	if (level[nw] >= level[y] && dist <= 0) {
		// cout << "!! " << nw << '\n';
		return true;
	}
	dist = y - x, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (dist <= 0) {
		// cout << "!!! " << nw << '\n';
		return true;
	}
	for (int i = LG - 1; i >= 0; i--) {
		if (binupr[i][nw].y < dist) {
			dist -= binupr[i][nw].y;
			nw = binupr[i][nw].x;
		}
	}
	assert(dist > 0);
	dist -= binupr[0][nw].y;
	nw = binupr[0][nw].x;
	if (level[nw] >= level[y] && dist <= 0) {
		// cout << "!!!! " << nw << '\n';
		return true;
	}
	return false;
}
 
int compare_plants(int x, int y) {
	if (try_compare(x, y) && level[x] > level[y]) {
		return 1;
	}
	if (try_compare(y, x) && level[y] > level[x]) {
		return -1;
	}
	// if (level[x] > level[y]) {
	// 	return 1;
	// }
	// if (level[y] > level[x]) {
	// 	return -1;
	// }
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 15 ms 107096 KB Output is correct
2 Correct 15 ms 107100 KB Output is correct
3 Correct 15 ms 107100 KB Output is correct
4 Correct 14 ms 107100 KB Output is correct
5 Correct 15 ms 107352 KB Output is correct
6 Correct 137 ms 109780 KB Output is correct
7 Correct 602 ms 184144 KB Output is correct
8 Correct 1657 ms 186488 KB Output is correct
9 Correct 1760 ms 186708 KB Output is correct
10 Correct 1508 ms 186428 KB Output is correct
11 Correct 1524 ms 186452 KB Output is correct
12 Correct 1478 ms 186304 KB Output is correct
13 Correct 1311 ms 186508 KB Output is correct
14 Correct 1836 ms 186496 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 107100 KB Output is correct
2 Correct 14 ms 107096 KB Output is correct
3 Correct 15 ms 107136 KB Output is correct
4 Correct 15 ms 107096 KB Output is correct
5 Correct 15 ms 107100 KB Output is correct
6 Correct 23 ms 107088 KB Output is correct
7 Correct 101 ms 110420 KB Output is correct
8 Correct 16 ms 107100 KB Output is correct
9 Correct 22 ms 107100 KB Output is correct
10 Correct 99 ms 110316 KB Output is correct
11 Correct 95 ms 110160 KB Output is correct
12 Correct 116 ms 110228 KB Output is correct
13 Correct 93 ms 110456 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 107100 KB Output is correct
2 Correct 14 ms 107096 KB Output is correct
3 Correct 15 ms 107136 KB Output is correct
4 Correct 15 ms 107096 KB Output is correct
5 Correct 15 ms 107100 KB Output is correct
6 Correct 23 ms 107088 KB Output is correct
7 Correct 101 ms 110420 KB Output is correct
8 Correct 16 ms 107100 KB Output is correct
9 Correct 22 ms 107100 KB Output is correct
10 Correct 99 ms 110316 KB Output is correct
11 Correct 95 ms 110160 KB Output is correct
12 Correct 116 ms 110228 KB Output is correct
13 Correct 93 ms 110456 KB Output is correct
14 Correct 227 ms 185156 KB Output is correct
15 Correct 2179 ms 198084 KB Output is correct
16 Correct 231 ms 185136 KB Output is correct
17 Correct 2138 ms 198348 KB Output is correct
18 Correct 1230 ms 195708 KB Output is correct
19 Correct 1378 ms 195916 KB Output is correct
20 Correct 1941 ms 205180 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 107100 KB Output is correct
2 Correct 14 ms 106984 KB Output is correct
3 Correct 136 ms 109908 KB Output is correct
4 Correct 1426 ms 186280 KB Output is correct
5 Correct 1617 ms 186488 KB Output is correct
6 Correct 1711 ms 186452 KB Output is correct
7 Correct 1913 ms 187732 KB Output is correct
8 Correct 2047 ms 194868 KB Output is correct
9 Correct 1428 ms 186488 KB Output is correct
10 Correct 1487 ms 186488 KB Output is correct
11 Correct 1325 ms 186740 KB Output is correct
12 Correct 1568 ms 186448 KB Output is correct
13 Correct 1458 ms 192336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 107096 KB Output is correct
2 Correct 14 ms 107048 KB Output is correct
3 Correct 15 ms 107100 KB Output is correct
4 Correct 14 ms 106980 KB Output is correct
5 Correct 16 ms 107100 KB Output is correct
6 Correct 18 ms 107304 KB Output is correct
7 Correct 45 ms 107608 KB Output is correct
8 Correct 34 ms 107684 KB Output is correct
9 Correct 41 ms 107604 KB Output is correct
10 Correct 33 ms 107712 KB Output is correct
11 Correct 43 ms 107608 KB Output is correct
12 Correct 42 ms 107764 KB Output is correct
13 Correct 28 ms 107612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 107100 KB Output is correct
2 Correct 14 ms 107100 KB Output is correct
3 Correct 15 ms 107096 KB Output is correct
4 Correct 14 ms 107100 KB Output is correct
5 Correct 20 ms 107100 KB Output is correct
6 Correct 1276 ms 186448 KB Output is correct
7 Correct 1491 ms 186708 KB Output is correct
8 Correct 1670 ms 187256 KB Output is correct
9 Correct 2003 ms 194940 KB Output is correct
10 Correct 1279 ms 186448 KB Output is correct
11 Correct 1401 ms 194024 KB Output is correct
12 Correct 1137 ms 186448 KB Output is correct
13 Correct 1351 ms 186712 KB Output is correct
14 Correct 1438 ms 186536 KB Output is correct
15 Correct 1757 ms 187256 KB Output is correct
16 Correct 1037 ms 186700 KB Output is correct
17 Correct 1250 ms 186496 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 107096 KB Output is correct
2 Correct 15 ms 107100 KB Output is correct
3 Correct 15 ms 107100 KB Output is correct
4 Correct 14 ms 107100 KB Output is correct
5 Correct 15 ms 107352 KB Output is correct
6 Correct 137 ms 109780 KB Output is correct
7 Correct 602 ms 184144 KB Output is correct
8 Correct 1657 ms 186488 KB Output is correct
9 Correct 1760 ms 186708 KB Output is correct
10 Correct 1508 ms 186428 KB Output is correct
11 Correct 1524 ms 186452 KB Output is correct
12 Correct 1478 ms 186304 KB Output is correct
13 Correct 1311 ms 186508 KB Output is correct
14 Correct 1836 ms 186496 KB Output is correct
15 Correct 15 ms 107100 KB Output is correct
16 Correct 14 ms 107096 KB Output is correct
17 Correct 15 ms 107136 KB Output is correct
18 Correct 15 ms 107096 KB Output is correct
19 Correct 15 ms 107100 KB Output is correct
20 Correct 23 ms 107088 KB Output is correct
21 Correct 101 ms 110420 KB Output is correct
22 Correct 16 ms 107100 KB Output is correct
23 Correct 22 ms 107100 KB Output is correct
24 Correct 99 ms 110316 KB Output is correct
25 Correct 95 ms 110160 KB Output is correct
26 Correct 116 ms 110228 KB Output is correct
27 Correct 93 ms 110456 KB Output is correct
28 Correct 227 ms 185156 KB Output is correct
29 Correct 2179 ms 198084 KB Output is correct
30 Correct 231 ms 185136 KB Output is correct
31 Correct 2138 ms 198348 KB Output is correct
32 Correct 1230 ms 195708 KB Output is correct
33 Correct 1378 ms 195916 KB Output is correct
34 Correct 1941 ms 205180 KB Output is correct
35 Correct 15 ms 107100 KB Output is correct
36 Correct 14 ms 106984 KB Output is correct
37 Correct 136 ms 109908 KB Output is correct
38 Correct 1426 ms 186280 KB Output is correct
39 Correct 1617 ms 186488 KB Output is correct
40 Correct 1711 ms 186452 KB Output is correct
41 Correct 1913 ms 187732 KB Output is correct
42 Correct 2047 ms 194868 KB Output is correct
43 Correct 1428 ms 186488 KB Output is correct
44 Correct 1487 ms 186488 KB Output is correct
45 Correct 1325 ms 186740 KB Output is correct
46 Correct 1568 ms 186448 KB Output is correct
47 Correct 1458 ms 192336 KB Output is correct
48 Correct 14 ms 107096 KB Output is correct
49 Correct 14 ms 107048 KB Output is correct
50 Correct 15 ms 107100 KB Output is correct
51 Correct 14 ms 106980 KB Output is correct
52 Correct 16 ms 107100 KB Output is correct
53 Correct 18 ms 107304 KB Output is correct
54 Correct 45 ms 107608 KB Output is correct
55 Correct 34 ms 107684 KB Output is correct
56 Correct 41 ms 107604 KB Output is correct
57 Correct 33 ms 107712 KB Output is correct
58 Correct 43 ms 107608 KB Output is correct
59 Correct 42 ms 107764 KB Output is correct
60 Correct 28 ms 107612 KB Output is correct
61 Correct 227 ms 110160 KB Output is correct
62 Correct 506 ms 184180 KB Output is correct
63 Correct 2050 ms 186488 KB Output is correct
64 Correct 1343 ms 186588 KB Output is correct
65 Correct 1660 ms 186624 KB Output is correct
66 Correct 1855 ms 187272 KB Output is correct
67 Correct 1997 ms 194884 KB Output is correct
68 Correct 1527 ms 189524 KB Output is correct
69 Correct 1505 ms 197972 KB Output is correct
70 Correct 1536 ms 189460 KB Output is correct
71 Correct 1739 ms 189560 KB Output is correct
72 Correct 1762 ms 189776 KB Output is correct
73 Correct 1849 ms 190800 KB Output is correct
74 Correct 1740 ms 189476 KB Output is correct
75 Correct 1337 ms 189920 KB Output is correct