Submission #934884

# Submission time Handle Problem Language Result Execution time Memory
934884 2024-02-28T06:18:50 Z GrindMachine The Big Prize (IOI17_prize) C++17
20 / 100
54 ms 2264 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi
https://codeforces.com/blog/entry/53595?#comment-376650
https://codeforces.com/blog/entry/53595?#comment-376581

f(i+1) > f(i)^2
#of non-lollipops = O(sqrt(n))

just check all non-lollipops for diamond
efficiently find all non-lollipops

*/

const int MOD = 1e9 + 7;
const int N = 2e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
const int B = 256;

#include "prize.h"

vector<pii> dp(N,{-1,-1});

pii ask2(int i){
	if(dp[i].ff != -1) return dp[i];
	vector<int> v = ask(i);
	return dp[i] = {v[0],v[1]};
}

int find_best(int n) {
	int mx = -1, pos = -1;

	rep(i,105){
		auto [cl,cr] = ask2(i);
		int cnt = cl+cr;
		if(cnt == 0){
			return i;
		}

		if(cnt >= 22){
			mx = cnt;
			pos = i;
			break;
		}

		if(cnt > mx){
			mx = cnt;
			pos = i;
		}
	}

	assert(pos != -1);

	deque<int> dq;
	for(int i = pos+B; i < n; i += B){
		dq.pb(i);
	}

	// find the closest non-lollipop with ind > i
	// given that the curr pos is a lollipop
	while(pos < n-1){
		while(!dq.empty() and dq.front() <= pos){
			dq.pop_front();
		}

		auto [fcl,fcr] = ask2(pos);
		int l = pos+1, r = n-1;

		if(!dq.empty()){
			l = dq.back()+1;
			rep(i,sz(dq)){
				auto [cl,cr] = ask2(dq[i]);
				int cnt = cl+cr;
				bool ok = false;
 
				// mid is not a lollipop
				if(cnt != mx){
					ok = true;
				}
				else{
					// mid is a lollipop
					if(cl > fcl){
						ok = true;
					}
				}
 
				if(ok){
					if(!i){
						l = pos+1;
					}
					else{
						l = dq[i-1]+1;
					}
 
					r = dq[i];
					break;
				}
			}	
		}

		int first = -1;

		while(l <= r){
			// is there a lollipop in range [pos,mid]?
			int mid = (l+r) >> 1;
			auto [cl,cr] = ask2(mid);
			int cnt = cl+cr;
			bool ok = false;

			// mid is not a lollipop
			if(cnt != mx){
				ok = true;
			}
			else{
				// mid is a lollipop
				if(cl > fcl){
					ok = true;
				}
			}

			if(ok){
				first = mid;
				r = mid-1;
			}
			else{
				l = mid+1;
			}
		}

		if(first == -1){
			break;
		}

		pos = -1;

		// find the closest pos >= first that is a lollipop
		for(int i = first; i < n; ++i){
			auto [cl,cr] = ask2(i);
			int cnt = cl+cr;
			
			if(cnt == 0){
				return i;
			}

			if(cnt == mx){
				pos = i;
				break;
			}
		}

		if(pos == -1) break;
	}

	// assert(0);
	return -1;
}

Compilation message

prize.cpp: In function 'int find_best(int)':
prize.cpp:28:36: warning: comparison of integer expressions of different signedness: 'int' and 'std::deque<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   28 | #define rep(i, n) for(int i = 0; i < n; ++i)
      |                                    ^
prize.cpp:121:4: note: in expansion of macro 'rep'
  121 |    rep(i,sz(dq)){
      |    ^~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2144 KB Output is correct
2 Correct 3 ms 2008 KB Output is correct
3 Correct 3 ms 2012 KB Output is correct
4 Correct 4 ms 2016 KB Output is correct
5 Correct 3 ms 2012 KB Output is correct
6 Correct 1 ms 1880 KB Output is correct
7 Correct 4 ms 2012 KB Output is correct
8 Correct 4 ms 2016 KB Output is correct
9 Correct 3 ms 2016 KB Output is correct
10 Correct 4 ms 2012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2016 KB Output is correct
2 Correct 3 ms 2012 KB Output is correct
3 Correct 3 ms 2016 KB Output is correct
4 Correct 5 ms 2016 KB Output is correct
5 Correct 4 ms 2016 KB Output is correct
6 Correct 1 ms 1880 KB Output is correct
7 Correct 3 ms 2016 KB Output is correct
8 Correct 3 ms 2012 KB Output is correct
9 Correct 3 ms 2020 KB Output is correct
10 Correct 4 ms 2004 KB Output is correct
11 Correct 3 ms 2008 KB Output is correct
12 Correct 1 ms 2020 KB Output is correct
13 Correct 5 ms 2016 KB Output is correct
14 Correct 2 ms 1880 KB Output is correct
15 Correct 4 ms 2016 KB Output is correct
16 Correct 15 ms 2016 KB Output is correct
17 Correct 1 ms 2264 KB Output is correct
18 Correct 25 ms 2008 KB Output is correct
19 Correct 1 ms 2012 KB Output is correct
20 Correct 5 ms 2008 KB Output is correct
21 Correct 10 ms 2016 KB Output is correct
22 Correct 2 ms 2012 KB Output is correct
23 Correct 2 ms 2016 KB Output is correct
24 Correct 1 ms 2144 KB Output is correct
25 Correct 13 ms 2020 KB Output is correct
26 Correct 9 ms 2008 KB Output is correct
27 Correct 2 ms 2016 KB Output is correct
28 Correct 18 ms 2020 KB Output is correct
29 Correct 13 ms 2008 KB Output is correct
30 Correct 23 ms 2016 KB Output is correct
31 Correct 1 ms 2136 KB Output is correct
32 Correct 4 ms 2016 KB Output is correct
33 Correct 2 ms 1880 KB Output is correct
34 Correct 7 ms 2016 KB Output is correct
35 Correct 4 ms 2008 KB Output is correct
36 Correct 5 ms 2144 KB Output is correct
37 Correct 2 ms 2012 KB Output is correct
38 Correct 2 ms 2016 KB Output is correct
39 Correct 9 ms 2012 KB Output is correct
40 Correct 18 ms 2016 KB Output is correct
41 Correct 14 ms 2012 KB Output is correct
42 Correct 15 ms 2016 KB Output is correct
43 Correct 10 ms 2016 KB Output is correct
44 Correct 10 ms 2264 KB Output is correct
45 Correct 7 ms 2012 KB Output is correct
46 Correct 1 ms 2020 KB Output is correct
47 Correct 16 ms 2012 KB Output is correct
48 Correct 18 ms 2012 KB Output is correct
49 Correct 2 ms 2016 KB Output is correct
50 Correct 22 ms 2144 KB Output is correct
51 Correct 10 ms 2020 KB Output is correct
52 Correct 1 ms 2012 KB Output is correct
53 Correct 4 ms 2136 KB Output is correct
54 Correct 8 ms 2264 KB Output is correct
55 Correct 1 ms 2016 KB Output is correct
56 Correct 24 ms 2008 KB Output is correct
57 Correct 18 ms 2016 KB Output is correct
58 Correct 14 ms 2020 KB Output is correct
59 Correct 10 ms 2016 KB Output is correct
60 Correct 9 ms 2012 KB Output is correct
61 Correct 4 ms 2012 KB Output is correct
62 Correct 2 ms 2008 KB Output is correct
63 Correct 5 ms 2012 KB Output is correct
64 Correct 3 ms 2016 KB Output is correct
65 Correct 4 ms 2016 KB Output is correct
66 Correct 6 ms 2016 KB Output is correct
67 Correct 4 ms 2012 KB Output is correct
68 Correct 2 ms 2008 KB Output is correct
69 Correct 8 ms 2212 KB Output is correct
70 Correct 5 ms 2264 KB Output is correct
71 Correct 23 ms 2020 KB Output is correct
72 Correct 5 ms 2020 KB Output is correct
73 Correct 17 ms 2016 KB Output is correct
74 Correct 21 ms 2012 KB Output is correct
75 Correct 4 ms 2008 KB Output is correct
76 Correct 19 ms 2012 KB Output is correct
77 Correct 21 ms 2024 KB Output is correct
78 Correct 5 ms 2012 KB Output is correct
79 Correct 15 ms 2012 KB Output is correct
80 Correct 17 ms 2016 KB Output is correct
81 Correct 23 ms 2012 KB Output is correct
82 Correct 27 ms 2012 KB Output is correct
83 Correct 5 ms 2012 KB Output is correct
84 Correct 18 ms 2012 KB Output is correct
85 Correct 27 ms 2264 KB Output is correct
86 Incorrect 54 ms 2020 KB Incorrect
87 Halted 0 ms 0 KB -