Submission #925435

# Submission time Handle Problem Language Result Execution time Memory
925435 2024-02-11T15:47:00 Z bachhoangxuan Ancient Machine (JOI21_ancient_machine) C++17
100 / 100
50 ms 8468 KB
#include "Anna.h"
#include <bits/stdc++.h>
using namespace std;
const int Block = 250;
const int Bit = 174;

constexpr int digits(int base) noexcept {
    return base <= 1 ? 0 : 1 + digits(base / 10);
}

constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);

constexpr int fft_base = 10'000;  // fft_base^2 * n / fft_base_digits <= 10^15 for double
constexpr int fft_base_digits = digits(fft_base);
using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx> roots = {{0, 0}, {1, 0}};

void ensure_capacity(int min_capacity) {
    for (int len = roots.size(); len < min_capacity; len *= 2) {
        for (int i = len >> 1; i < len; i++) {
            roots.emplace_back(roots[i]);
            double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
            roots.emplace_back(cos(angle), sin(angle));
        }
    }
}

void fft(vector<cpx> &z, bool inverse) {
    int n = z.size();
    assert((n & (n - 1)) == 0);
    ensure_capacity(n);
    for (unsigned i = 1, j = 0; i < n; i++) {
        int bit = n >> 1;
        for (; j >= bit; bit >>= 1)
            j -= bit;
        j += bit;
        if (i < j)
            swap(z[i], z[j]);
    }
    for (int len = 1; len < n; len <<= 1) {
        for (int i = 0; i < n; i += len * 2) {
            for (int j = 0; j < len; j++) {
                cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
                cpx u = z[i + j];
                cpx v = z[i + j + len] * root;
                z[i + j] = u + v;
                z[i + j + len] = u - v;
            }
        }
    }
    if (inverse)
        for (int i = 0; i < n; i++)
            z[i] /= n;
}

vector<int> multiply_bigint(const vector<int> &a, const vector<int> &b, int base) {
    int need = a.size() + b.size();
    int n = 1;
    while (n < need)
        n <<= 1;
    vector<cpx> p(n);
    for (size_t i = 0; i < n; i++) {
        p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
    }
    fft(p, false);
    // a[w[k]] = (p[w[k]] + conj(p[w[n-k]])) / 2
    // b[w[k]] = (p[w[k]] - conj(p[w[n-k]])) / (2*i)
    vector<cpx> ab(n);
    cpx r(0, -0.25);
    for (int i = 0; i < n; i++) {
        int j = (n - i) & (n - 1);
        ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
    }
    fft(ab, true);
    vector<int> result(need);
    long long carry = 0;
    for (int i = 0; i < need; i++) {
        long long d = (long long)(ab[i].real() + 0.5) + carry;
        carry = d / base;
        result[i] = d % base;
    }
    return result;
}
struct bigint {
    // value == 0 is represented by empty z
    vector<int> z;  // digits

    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;

    bigint(long long v = 0) { *this = v; }

    bigint &operator=(long long v) {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int)(v % base));
        return *this;
    }

    bigint(const string &s) { read(s); }

    bigint &operator+=(const bigint &other) {
        if (sign == other.sign) {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        } else if (other != 0 /* prevent infinite loop */) {
            *this -= -other;
        }
        return *this;
    }

    friend bigint operator+(bigint a, const bigint &b) {
        a += b;
        return a;
    }

    bigint &operator-=(const bigint &other) {
        if (sign == other.sign) {
            if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            } else {
                *this = other - *this;
                this->sign = -this->sign;
            }
        } else {
            *this += -other;
        }
        return *this;
    }

    friend bigint operator-(bigint a, const bigint &b) {
        a -= b;
        return a;
    }

    bigint &operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long)z[i] * v + carry;
            carry = (int)(cur / base);
            z[i] = (int)(cur % base);
        }
        trim();
        return *this;
    }

    bigint operator*(int v) const { return bigint(*this) *= v; }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = (int)a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int)(((long long)s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }

    friend bigint sqrt(const bigint &a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--) {
            for (;; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base +
                            (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint &v) const { return divmod(*this, v).first; }

    bigint operator%(const bigint &v) const { return divmod(*this, v).second; }

    bigint &operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long)base;
            z[i] = (int)(cur / v);
            rem = (int)(cur % v);
        }
        trim();
        return *this;
    }

    bigint operator/(int v) const { return bigint(*this) /= v; }

    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int)z.size() - 1; i >= 0; --i)
            m = (int)((z[i] + m * (long long)base) % v);
        return m * sign;
    }

    bigint &operator*=(const bigint &v) {
        *this = *this * v;
        return *this;
    }

    bigint &operator/=(const bigint &v) {
        *this = *this / v;
        return *this;
    }

    bigint &operator%=(const bigint &v) {
        *this = *this % v;
        return *this;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const { return v < *this; }

    bool operator<=(const bigint &v) const { return !(v < *this); }

    bool operator>=(const bigint &v) const { return !(*this < v); }

    bool operator==(const bigint &v) const { return sign == v.sign && z == v.z; }

    bool operator!=(const bigint &v) const { return !(*this == v); }

    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const { return z.empty(); }

    friend bigint operator-(bigint v) {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }

    bigint abs() const { return sign == 1 ? *this : -*this; }

    long long longValue() const {
        long long res = 0;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) { return b.isZero() ? a : gcd(b, a % b); }

    friend bigint lcm(const bigint &a, const bigint &b) { return a / gcd(a, b) * b; }

    void read(const string &s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int)s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int)v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a) {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int)cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    bigint operator*(const bigint &v) const {
        if (min(z.size(), v.z.size()) < 150)
            return mul_simple(v);
        bigint res;
        res.sign = sign * v.sign;
        res.z = multiply_bigint(convert_base(z, base_digits, fft_base_digits),
                                convert_base(v.z, base_digits, fft_base_digits), fft_base);
        res.z = convert_base(res.z, fft_base_digits, base_digits);
        res.trim();
        return res;
    }

    bigint mul_simple(const bigint &v) const {
        bigint res;
        res.sign = sign * v.sign;
        res.z.resize(z.size() + v.z.size());
        for (int i = 0; i < z.size(); ++i)
            if (z[i])
                for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
                    long long cur = res.z[i + j] + (long long)z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
                    carry = (int)(cur / base);
                    res.z[i + j] = (int)(cur % base);
                }
        res.trim();
        return res;
    }
};

namespace{
    bigint F[Block+5];
}

bigint bit_to_fib(string s){
    bigint total=0;
    int pos=Block-1;
    while(pos>=0){
        if(s[pos]=='1') total+=F[pos],pos-=2;
        else pos--;
    }
    return total;
}

void Anna(int N, std::vector<char> S) {
    F[0]=1;F[1]=2;
    for(int i=2;i<=Block;i++) F[i]=(F[i-1]+F[i-2]);

    int f=-1,lst=-1;
    string res;
    for(int i=0;i<N;i++){
        if(f==-1){
            if(S[i]=='X') f=i;
            res+='0';
        }
        else if(S[i]=='Z'){
            if(S[i-1]=='Z') res.back()='0';
            res+='1';
        }
        else res+='0';
    }

    bool check=true;
    if(f!=-1 && (f+1==N || res[f+1]=='0')) res[f]='1';
    else check=false;

    while(N%Block!=0) res+='0',N++;
    for(int i=0;i<N;i+=Block){
        string cur;
        for(int j=0;j<Block;j++) cur+=res[i+j];
        bigint total=bit_to_fib(cur);
        for(int j=0;j<Bit;j++) Send(total%2),total/=2;
    }
    if(!check){
        if(f==-1) Send(0);
        else Send(1);
    }
}
#include "Bruno.h"
#include<bits/stdc++.h>
using namespace std;
const int Block = 250;
const int Bit = 174;

constexpr int digits(int base) noexcept {
    return base <= 1 ? 0 : 1 + digits(base / 10);
}

constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);

constexpr int fft_base = 10'000;  // fft_base^2 * n / fft_base_digits <= 10^15 for double
constexpr int fft_base_digits = digits(fft_base);
using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx> roots = {{0, 0}, {1, 0}};

void ensure_capacity(int min_capacity) {
    for (int len = roots.size(); len < min_capacity; len *= 2) {
        for (int i = len >> 1; i < len; i++) {
            roots.emplace_back(roots[i]);
            double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
            roots.emplace_back(cos(angle), sin(angle));
        }
    }
}

void fft(vector<cpx> &z, bool inverse) {
    int n = z.size();
    assert((n & (n - 1)) == 0);
    ensure_capacity(n);
    for (unsigned i = 1, j = 0; i < n; i++) {
        int bit = n >> 1;
        for (; j >= bit; bit >>= 1)
            j -= bit;
        j += bit;
        if (i < j)
            swap(z[i], z[j]);
    }
    for (int len = 1; len < n; len <<= 1) {
        for (int i = 0; i < n; i += len * 2) {
            for (int j = 0; j < len; j++) {
                cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
                cpx u = z[i + j];
                cpx v = z[i + j + len] * root;
                z[i + j] = u + v;
                z[i + j + len] = u - v;
            }
        }
    }
    if (inverse)
        for (int i = 0; i < n; i++)
            z[i] /= n;
}

vector<int> multiply_bigint(const vector<int> &a, const vector<int> &b, int base) {
    int need = a.size() + b.size();
    int n = 1;
    while (n < need)
        n <<= 1;
    vector<cpx> p(n);
    for (size_t i = 0; i < n; i++) {
        p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
    }
    fft(p, false);
    // a[w[k]] = (p[w[k]] + conj(p[w[n-k]])) / 2
    // b[w[k]] = (p[w[k]] - conj(p[w[n-k]])) / (2*i)
    vector<cpx> ab(n);
    cpx r(0, -0.25);
    for (int i = 0; i < n; i++) {
        int j = (n - i) & (n - 1);
        ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
    }
    fft(ab, true);
    vector<int> result(need);
    long long carry = 0;
    for (int i = 0; i < need; i++) {
        long long d = (long long)(ab[i].real() + 0.5) + carry;
        carry = d / base;
        result[i] = d % base;
    }
    return result;
}
struct bigint {
    // value == 0 is represented by empty z
    vector<int> z;  // digits

    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;

    bigint(long long v = 0) { *this = v; }

    bigint &operator=(long long v) {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int)(v % base));
        return *this;
    }

    bigint(const string &s) { read(s); }

    bigint &operator+=(const bigint &other) {
        if (sign == other.sign) {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        } else if (other != 0 /* prevent infinite loop */) {
            *this -= -other;
        }
        return *this;
    }

    friend bigint operator+(bigint a, const bigint &b) {
        a += b;
        return a;
    }

    bigint &operator-=(const bigint &other) {
        if (sign == other.sign) {
            if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            } else {
                *this = other - *this;
                this->sign = -this->sign;
            }
        } else {
            *this += -other;
        }
        return *this;
    }

    friend bigint operator-(bigint a, const bigint &b) {
        a -= b;
        return a;
    }

    bigint &operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long)z[i] * v + carry;
            carry = (int)(cur / base);
            z[i] = (int)(cur % base);
        }
        trim();
        return *this;
    }

    bigint operator*(int v) const { return bigint(*this) *= v; }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = (int)a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int)(((long long)s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }

    friend bigint sqrt(const bigint &a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--) {
            for (;; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base +
                            (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint &v) const { return divmod(*this, v).first; }

    bigint operator%(const bigint &v) const { return divmod(*this, v).second; }

    bigint &operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long)base;
            z[i] = (int)(cur / v);
            rem = (int)(cur % v);
        }
        trim();
        return *this;
    }

    bigint operator/(int v) const { return bigint(*this) /= v; }

    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int)z.size() - 1; i >= 0; --i)
            m = (int)((z[i] + m * (long long)base) % v);
        return m * sign;
    }

    bigint &operator*=(const bigint &v) {
        *this = *this * v;
        return *this;
    }

    bigint &operator/=(const bigint &v) {
        *this = *this / v;
        return *this;
    }

    bigint &operator%=(const bigint &v) {
        *this = *this % v;
        return *this;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const { return v < *this; }

    bool operator<=(const bigint &v) const { return !(v < *this); }

    bool operator>=(const bigint &v) const { return !(*this < v); }

    bool operator==(const bigint &v) const { return sign == v.sign && z == v.z; }

    bool operator!=(const bigint &v) const { return !(*this == v); }

    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const { return z.empty(); }

    friend bigint operator-(bigint v) {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }

    bigint abs() const { return sign == 1 ? *this : -*this; }

    long long longValue() const {
        long long res = 0;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) { return b.isZero() ? a : gcd(b, a % b); }

    friend bigint lcm(const bigint &a, const bigint &b) { return a / gcd(a, b) * b; }

    void read(const string &s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int)s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int)v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a) {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int)cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    bigint operator*(const bigint &v) const {
        if (min(z.size(), v.z.size()) < 150)
            return mul_simple(v);
        bigint res;
        res.sign = sign * v.sign;
        res.z = multiply_bigint(convert_base(z, base_digits, fft_base_digits),
                                convert_base(v.z, base_digits, fft_base_digits), fft_base);
        res.z = convert_base(res.z, fft_base_digits, base_digits);
        res.trim();
        return res;
    }

    bigint mul_simple(const bigint &v) const {
        bigint res;
        res.sign = sign * v.sign;
        res.z.resize(z.size() + v.z.size());
        for (int i = 0; i < z.size(); ++i)
            if (z[i])
                for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
                    long long cur = res.z[i + j] + (long long)z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
                    carry = (int)(cur / base);
                    res.z[i + j] = (int)(cur % base);
                }
        res.trim();
        return res;
    }
};

namespace{
    bigint F[Block+5];
}

string fib_to_bit(bigint total){
    string res;
    int pos=Block-1;
    while(pos>=0){
        if(total>=F[pos]) res+="10",total-=F[pos],pos-=2;
        else res+='0',pos--;
    }
    if((int)res.length()>Block) res.pop_back();
    reverse(res.begin(),res.end());
    return res;
}

void Bruno(int N, int L,vector<int> A) {

    F[0]=1;F[1]=2;
    for(int i=2;i<=Block;i++) F[i]=F[i-1]+F[i-2];

    int f=0;
    if(L%Bit!=0){
        if(A.back()!=0) f=1;
        else f=-1;
        A.pop_back();L--;
    }
    if(f==-1){
        for(int i=0;i<N;i++) Remove(i);
        return;
    }
    string s;
    for(int i=0;i<L;i+=Bit){
        bigint total=0;
        for(int j=Bit-1;j>=0;j--) total=total*2+A[i+j];
        s+=fib_to_bit(total);
    }
    while((int)s.length()>N) s.pop_back();
    for(int i=0;i<N;i++) if(s[i]=='1'){
        f=i-f;break;
    }

    for(int i=0;i<f;i++) Remove(i);

    int lst=f;
    for(int i=f+1;i<N;i++){
        if(s[i]=='1'){
            for(int j=i-1;j>lst;j--) Remove(j);
            Remove(i);lst=i;
        }
    }
    for(int i=lst+1;i<N;i++) Remove(i);
    Remove(f);
}

Compilation message

Anna.cpp: In function 'void fft(std::vector<std::complex<double> >&, bool)':
Anna.cpp:34:35: warning: comparison of integer expressions of different signedness: 'unsigned int' and 'int' [-Wsign-compare]
   34 |     for (unsigned i = 1, j = 0; i < n; i++) {
      |                                 ~~^~~
Anna.cpp:36:18: warning: comparison of integer expressions of different signedness: 'unsigned int' and 'int' [-Wsign-compare]
   36 |         for (; j >= bit; bit >>= 1)
      |                ~~^~~~~~
Anna.cpp: In function 'std::vector<int> multiply_bigint(const std::vector<int>&, const std::vector<int>&, int)':
Anna.cpp:64:26: warning: comparison of integer expressions of different signedness: 'size_t' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   64 |     for (size_t i = 0; i < n; i++) {
      |                        ~~^~~
Anna.cpp: In member function 'bigint& bigint::operator+=(const bigint&)':
Anna.cpp:109:42: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  109 |             for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
      |                                        ~~^~~~~~~~~~~~~~~~
Anna.cpp:110:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  110 |                 if (i == z.size())
      |                     ~~^~~~~~~~~~~
Anna.cpp:112:36: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  112 |                 z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
      |                                  ~~^~~~~~~~~~~~~~~~
Anna.cpp: In member function 'bigint& bigint::operator-=(const bigint&)':
Anna.cpp:131:46: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  131 |                 for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
      |                                            ~~^~~~~~~~~~~~~~~~
Anna.cpp:132:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |                     z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
      |                                      ~~^~~~~~~~~~~~~~~~
Anna.cpp: In member function 'bigint& bigint::operator*=(int)':
Anna.cpp:156:38: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  156 |         for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
      |                                    ~~^~~~~~~~~~
Anna.cpp:157:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  157 |             if (i == z.size())
      |                 ~~^~~~~~~~~~~
Anna.cpp: In member function 'void bigint::read(const string&)':
Anna.cpp:333:20: warning: comparison of integer expressions of different signedness: 'int' and 'std::__cxx11::basic_string<char>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  333 |         while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
      |                ~~~~^~~~~~~~~~
Anna.cpp: In static member function 'static std::vector<int> bigint::convert_base(const std::vector<int>&, int, int)':
Anna.cpp:366:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  366 |         for (int i = 1; i < p.size(); i++)
      |                         ~~^~~~~~~~~~
Anna.cpp: In member function 'bigint bigint::mul_simple(const bigint&) const':
Anna.cpp:402:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  402 |         for (int i = 0; i < z.size(); ++i)
      |                         ~~^~~~~~~~~~
Anna.cpp:404:46: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  404 |                 for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
      |                                            ~~^~~~~~~~~~~~
Anna.cpp:405:73: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  405 |                     long long cur = res.z[i + j] + (long long)z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
      |                                                                       ~~^~~~~~~~~~~~
Anna.cpp: In function 'void Anna(int, std::vector<char>)':
Anna.cpp:432:14: warning: unused variable 'lst' [-Wunused-variable]
  432 |     int f=-1,lst=-1;
      |              ^~~

Bruno.cpp: In function 'void fft(std::vector<std::complex<double> >&, bool)':
Bruno.cpp:34:35: warning: comparison of integer expressions of different signedness: 'unsigned int' and 'int' [-Wsign-compare]
   34 |     for (unsigned i = 1, j = 0; i < n; i++) {
      |                                 ~~^~~
Bruno.cpp:36:18: warning: comparison of integer expressions of different signedness: 'unsigned int' and 'int' [-Wsign-compare]
   36 |         for (; j >= bit; bit >>= 1)
      |                ~~^~~~~~
Bruno.cpp: In function 'std::vector<int> multiply_bigint(const std::vector<int>&, const std::vector<int>&, int)':
Bruno.cpp:64:26: warning: comparison of integer expressions of different signedness: 'size_t' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   64 |     for (size_t i = 0; i < n; i++) {
      |                        ~~^~~
Bruno.cpp: In member function 'bigint& bigint::operator+=(const bigint&)':
Bruno.cpp:109:42: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  109 |             for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
      |                                        ~~^~~~~~~~~~~~~~~~
Bruno.cpp:110:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  110 |                 if (i == z.size())
      |                     ~~^~~~~~~~~~~
Bruno.cpp:112:36: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  112 |                 z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
      |                                  ~~^~~~~~~~~~~~~~~~
Bruno.cpp: In member function 'bigint& bigint::operator-=(const bigint&)':
Bruno.cpp:131:46: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  131 |                 for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
      |                                            ~~^~~~~~~~~~~~~~~~
Bruno.cpp:132:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |                     z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
      |                                      ~~^~~~~~~~~~~~~~~~
Bruno.cpp: In member function 'bigint& bigint::operator*=(int)':
Bruno.cpp:156:38: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  156 |         for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
      |                                    ~~^~~~~~~~~~
Bruno.cpp:157:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  157 |             if (i == z.size())
      |                 ~~^~~~~~~~~~~
Bruno.cpp: In member function 'void bigint::read(const string&)':
Bruno.cpp:333:20: warning: comparison of integer expressions of different signedness: 'int' and 'std::__cxx11::basic_string<char>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  333 |         while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
      |                ~~~~^~~~~~~~~~
Bruno.cpp: In static member function 'static std::vector<int> bigint::convert_base(const std::vector<int>&, int, int)':
Bruno.cpp:366:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  366 |         for (int i = 1; i < p.size(); i++)
      |                         ~~^~~~~~~~~~
Bruno.cpp: In member function 'bigint bigint::mul_simple(const bigint&) const':
Bruno.cpp:402:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  402 |         for (int i = 0; i < z.size(); ++i)
      |                         ~~^~~~~~~~~~
Bruno.cpp:404:46: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  404 |                 for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
      |                                            ~~^~~~~~~~~~~~
Bruno.cpp:405:73: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  405 |                     long long cur = res.z[i + j] + (long long)z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
      |                                                                       ~~^~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 792 KB Output is correct
2 Correct 0 ms 804 KB Output is correct
3 Correct 0 ms 1196 KB Output is correct
4 Correct 1 ms 780 KB Output is correct
5 Correct 0 ms 784 KB Output is correct
6 Correct 0 ms 792 KB Output is correct
7 Correct 0 ms 784 KB Output is correct
8 Correct 0 ms 796 KB Output is correct
9 Correct 0 ms 792 KB Output is correct
10 Correct 0 ms 780 KB Output is correct
11 Correct 0 ms 784 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 8264 KB Output is correct
2 Correct 45 ms 8468 KB Output is correct
3 Correct 43 ms 8160 KB Output is correct
4 Correct 43 ms 8272 KB Output is correct
5 Correct 45 ms 8172 KB Output is correct
6 Correct 46 ms 8276 KB Output is correct
7 Correct 43 ms 8292 KB Output is correct
8 Correct 46 ms 8324 KB Output is correct
9 Correct 45 ms 8264 KB Output is correct
10 Correct 46 ms 8260 KB Output is correct
11 Correct 48 ms 8164 KB Output is correct
12 Correct 41 ms 8148 KB Output is correct
13 Correct 43 ms 8176 KB Output is correct
14 Correct 50 ms 8164 KB Output is correct
15 Correct 48 ms 8176 KB Output is correct
16 Correct 43 ms 8268 KB Output is correct
17 Correct 44 ms 8400 KB Output is correct
18 Correct 42 ms 8260 KB Output is correct
19 Correct 42 ms 8228 KB Output is correct
20 Correct 44 ms 8168 KB Output is correct
21 Correct 43 ms 8184 KB Output is correct
22 Correct 45 ms 8228 KB Output is correct
23 Correct 41 ms 8220 KB Output is correct
24 Correct 41 ms 8252 KB Output is correct
25 Correct 42 ms 8252 KB Output is correct
26 Correct 50 ms 8188 KB Output is correct
27 Correct 43 ms 8276 KB Output is correct
28 Correct 46 ms 8224 KB Output is correct
29 Correct 41 ms 8192 KB Output is correct
30 Correct 43 ms 8312 KB Output is correct
31 Correct 42 ms 8184 KB Output is correct
32 Correct 43 ms 8248 KB Output is correct
33 Correct 48 ms 8228 KB Output is correct